MakeItFrom.com
Menu (ESC)

CC480K Bronze vs. C52100 Bronze

Both CC480K bronze and C52100 bronze are copper alloys. They have a very high 96% of their average alloy composition in common. There are 24 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is CC480K bronze and the bottom bar is C52100 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 41
41
Tensile Strength: Ultimate (UTS), MPa 300
380 to 800

Thermal Properties

Latent Heat of Fusion, J/g 190
200
Maximum Temperature: Mechanical, °C 170
180
Melting Completion (Liquidus), °C 1010
1030
Melting Onset (Solidus), °C 900
880
Specific Heat Capacity, J/kg-K 370
370
Thermal Conductivity, W/m-K 63
62
Thermal Expansion, µm/m-K 18
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
13
Electrical Conductivity: Equal Weight (Specific), % IACS 11
13

Otherwise Unclassified Properties

Base Metal Price, % relative 35
34
Density, g/cm3 8.8
8.8
Embodied Carbon, kg CO2/kg material 3.7
3.4
Embodied Energy, MJ/kg 59
55
Embodied Water, L/kg 390
370

Common Calculations

Stiffness to Weight: Axial, points 6.9
7.0
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 9.6
12 to 25
Strength to Weight: Bending, points 11
13 to 22
Thermal Diffusivity, mm2/s 20
19
Thermal Shock Resistance, points 11
14 to 28

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0 to 0.010
0
Antimony (Sb), % 0 to 0.2
0
Copper (Cu), % 86 to 90
89.8 to 93
Iron (Fe), % 0 to 0.2
0 to 0.1
Lead (Pb), % 0 to 1.0
0 to 0.050
Manganese (Mn), % 0 to 0.1
0
Nickel (Ni), % 0 to 2.0
0
Phosphorus (P), % 0 to 0.2
0.030 to 0.35
Silicon (Si), % 0 to 0.020
0
Sulfur (S), % 0 to 0.050
0
Tin (Sn), % 9.0 to 11
7.0 to 9.0
Zinc (Zn), % 0 to 0.5
0 to 0.2
Residuals, % 0
0 to 0.5