MakeItFrom.com
Menu (ESC)

CC480K Bronze vs. S35500 Stainless Steel

CC480K bronze belongs to the copper alloys classification, while S35500 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is CC480K bronze and the bottom bar is S35500 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 13
14
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 41
78
Tensile Strength: Ultimate (UTS), MPa 300
1330 to 1490
Tensile Strength: Yield (Proof), MPa 180
1200 to 1280

Thermal Properties

Latent Heat of Fusion, J/g 190
280
Maximum Temperature: Mechanical, °C 170
870
Melting Completion (Liquidus), °C 1010
1460
Melting Onset (Solidus), °C 900
1420
Specific Heat Capacity, J/kg-K 370
470
Thermal Conductivity, W/m-K 63
16
Thermal Expansion, µm/m-K 18
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 11
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 35
16
Density, g/cm3 8.8
7.8
Embodied Carbon, kg CO2/kg material 3.7
3.5
Embodied Energy, MJ/kg 59
47
Embodied Water, L/kg 390
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 35
180 to 190
Resilience: Unit (Modulus of Resilience), kJ/m3 140
3610 to 4100
Stiffness to Weight: Axial, points 6.9
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 9.6
47 to 53
Strength to Weight: Bending, points 11
34 to 37
Thermal Diffusivity, mm2/s 20
4.4
Thermal Shock Resistance, points 11
44 to 49

Alloy Composition

Aluminum (Al), % 0 to 0.010
0
Antimony (Sb), % 0 to 0.2
0
Carbon (C), % 0
0.1 to 0.15
Chromium (Cr), % 0
15 to 16
Copper (Cu), % 86 to 90
0
Iron (Fe), % 0 to 0.2
73.2 to 77.7
Lead (Pb), % 0 to 1.0
0
Manganese (Mn), % 0 to 0.1
0.5 to 1.3
Molybdenum (Mo), % 0
2.5 to 3.2
Nickel (Ni), % 0 to 2.0
4.0 to 5.0
Niobium (Nb), % 0
0.1 to 0.5
Nitrogen (N), % 0
0.070 to 0.13
Phosphorus (P), % 0 to 0.2
0 to 0.040
Silicon (Si), % 0 to 0.020
0 to 0.5
Sulfur (S), % 0 to 0.050
0 to 0.030
Tin (Sn), % 9.0 to 11
0
Zinc (Zn), % 0 to 0.5
0