MakeItFrom.com
Menu (ESC)

CC482K Bronze vs. AISI 440C Stainless Steel

CC482K bronze belongs to the copper alloys classification, while AISI 440C stainless steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is CC482K bronze and the bottom bar is AISI 440C stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 5.6
2.0 to 14
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 40
76
Tensile Strength: Ultimate (UTS), MPa 300
710 to 1970
Tensile Strength: Yield (Proof), MPa 160
450 to 1900

Thermal Properties

Latent Heat of Fusion, J/g 190
280
Maximum Temperature: Mechanical, °C 160
870
Melting Completion (Liquidus), °C 980
1480
Melting Onset (Solidus), °C 860
1370
Specific Heat Capacity, J/kg-K 360
480
Thermal Conductivity, W/m-K 64
22
Thermal Expansion, µm/m-K 18
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 10
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 36
9.0
Density, g/cm3 8.8
7.7
Embodied Carbon, kg CO2/kg material 3.8
2.2
Embodied Energy, MJ/kg 62
31
Embodied Water, L/kg 400
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 14
39 to 88
Stiffness to Weight: Axial, points 6.8
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 9.5
26 to 71
Strength to Weight: Bending, points 11
23 to 46
Thermal Diffusivity, mm2/s 20
6.0
Thermal Shock Resistance, points 11
26 to 71

Alloy Composition

Aluminum (Al), % 0 to 0.010
0
Antimony (Sb), % 0 to 0.2
0
Carbon (C), % 0
1.0 to 1.2
Chromium (Cr), % 0
16 to 18
Copper (Cu), % 83.5 to 87
0
Iron (Fe), % 0 to 0.2
78 to 83.1
Lead (Pb), % 0.7 to 2.5
0
Manganese (Mn), % 0 to 0.2
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.75
Nickel (Ni), % 0 to 2.0
0
Phosphorus (P), % 0 to 0.4
0 to 0.040
Silicon (Si), % 0 to 0.010
0 to 1.0
Sulfur (S), % 0 to 0.080
0 to 0.015
Tin (Sn), % 10.5 to 12.5
0
Zinc (Zn), % 0 to 2.0
0