MakeItFrom.com
Menu (ESC)

CC482K Bronze vs. EN 1.4911 Stainless Steel

CC482K bronze belongs to the copper alloys classification, while EN 1.4911 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is CC482K bronze and the bottom bar is EN 1.4911 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 5.6
11
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 40
76
Tensile Strength: Ultimate (UTS), MPa 300
1070
Tensile Strength: Yield (Proof), MPa 160
970

Thermal Properties

Latent Heat of Fusion, J/g 190
270
Maximum Temperature: Mechanical, °C 160
700
Melting Completion (Liquidus), °C 980
1450
Melting Onset (Solidus), °C 860
1410
Specific Heat Capacity, J/kg-K 360
470
Thermal Conductivity, W/m-K 64
20
Thermal Expansion, µm/m-K 18
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
2.7
Electrical Conductivity: Equal Weight (Specific), % IACS 10
3.0

Otherwise Unclassified Properties

Base Metal Price, % relative 36
20
Density, g/cm3 8.8
7.9
Embodied Carbon, kg CO2/kg material 3.8
3.4
Embodied Energy, MJ/kg 62
49
Embodied Water, L/kg 400
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 14
120
Resilience: Unit (Modulus of Resilience), kJ/m3 120
2410
Stiffness to Weight: Axial, points 6.8
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 9.5
38
Strength to Weight: Bending, points 11
30
Thermal Diffusivity, mm2/s 20
5.4
Thermal Shock Resistance, points 11
37

Alloy Composition

Aluminum (Al), % 0 to 0.010
0
Antimony (Sb), % 0 to 0.2
0
Boron (B), % 0
0.0050 to 0.015
Carbon (C), % 0
0.050 to 0.12
Chromium (Cr), % 0
9.8 to 11.2
Cobalt (Co), % 0
5.0 to 7.0
Copper (Cu), % 83.5 to 87
0
Iron (Fe), % 0 to 0.2
75.7 to 83.8
Lead (Pb), % 0.7 to 2.5
0
Manganese (Mn), % 0 to 0.2
0.3 to 1.3
Molybdenum (Mo), % 0
0.5 to 1.0
Nickel (Ni), % 0 to 2.0
0.2 to 1.2
Niobium (Nb), % 0
0.2 to 0.5
Nitrogen (N), % 0
0 to 0.035
Phosphorus (P), % 0 to 0.4
0 to 0.025
Silicon (Si), % 0 to 0.010
0.1 to 0.8
Sulfur (S), % 0 to 0.080
0 to 0.015
Tin (Sn), % 10.5 to 12.5
0
Tungsten (W), % 0
0 to 0.7
Vanadium (V), % 0
0.1 to 0.4
Zinc (Zn), % 0 to 2.0
0