MakeItFrom.com
Menu (ESC)

CC482K Bronze vs. Titanium 6-5-0.5

CC482K bronze belongs to the copper alloys classification, while titanium 6-5-0.5 belongs to the titanium alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is CC482K bronze and the bottom bar is titanium 6-5-0.5.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
100
Elongation at Break, % 5.6
6.7
Poisson's Ratio 0.34
0.32
Shear Modulus, GPa 40
40
Tensile Strength: Ultimate (UTS), MPa 300
1080
Tensile Strength: Yield (Proof), MPa 160
990

Thermal Properties

Latent Heat of Fusion, J/g 190
410
Maximum Temperature: Mechanical, °C 160
300
Melting Completion (Liquidus), °C 980
1610
Melting Onset (Solidus), °C 860
1560
Specific Heat Capacity, J/kg-K 360
550
Thermal Conductivity, W/m-K 64
4.2
Thermal Expansion, µm/m-K 18
9.4

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 10
2.1

Otherwise Unclassified Properties

Base Metal Price, % relative 36
41
Density, g/cm3 8.8
4.5
Embodied Carbon, kg CO2/kg material 3.8
33
Embodied Energy, MJ/kg 62
540
Embodied Water, L/kg 400
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 14
71
Resilience: Unit (Modulus of Resilience), kJ/m3 120
4630
Stiffness to Weight: Axial, points 6.8
13
Stiffness to Weight: Bending, points 18
35
Strength to Weight: Axial, points 9.5
67
Strength to Weight: Bending, points 11
52
Thermal Diffusivity, mm2/s 20
1.7
Thermal Shock Resistance, points 11
79

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0 to 0.010
5.7 to 6.3
Antimony (Sb), % 0 to 0.2
0
Carbon (C), % 0
0 to 0.080
Copper (Cu), % 83.5 to 87
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.2
0 to 0.2
Lead (Pb), % 0.7 to 2.5
0
Manganese (Mn), % 0 to 0.2
0
Molybdenum (Mo), % 0
0.25 to 0.75
Nickel (Ni), % 0 to 2.0
0
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.19
Phosphorus (P), % 0 to 0.4
0
Silicon (Si), % 0 to 0.010
0 to 0.4
Sulfur (S), % 0 to 0.080
0
Tin (Sn), % 10.5 to 12.5
0
Titanium (Ti), % 0
85.6 to 90.1
Zinc (Zn), % 0 to 2.0
0
Zirconium (Zr), % 0
4.0 to 6.0
Residuals, % 0
0 to 0.4