MakeItFrom.com
Menu (ESC)

CC483K Bronze vs. C33500 Brass

Both CC483K bronze and C33500 brass are copper alloys. They have 64% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is CC483K bronze and the bottom bar is C33500 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
100
Elongation at Break, % 6.4
3.0 to 28
Poisson's Ratio 0.34
0.31
Shear Modulus, GPa 40
40
Tensile Strength: Ultimate (UTS), MPa 310
340 to 650
Tensile Strength: Yield (Proof), MPa 170
120 to 420

Thermal Properties

Latent Heat of Fusion, J/g 190
170
Maximum Temperature: Mechanical, °C 170
120
Melting Completion (Liquidus), °C 990
930
Melting Onset (Solidus), °C 870
900
Specific Heat Capacity, J/kg-K 370
390
Thermal Conductivity, W/m-K 68
120
Thermal Expansion, µm/m-K 18
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
26
Electrical Conductivity: Equal Weight (Specific), % IACS 10
29

Otherwise Unclassified Properties

Base Metal Price, % relative 36
24
Density, g/cm3 8.7
8.1
Embodied Carbon, kg CO2/kg material 3.8
2.7
Embodied Energy, MJ/kg 62
45
Embodied Water, L/kg 400
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17
8.0 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 130
69 to 860
Stiffness to Weight: Axial, points 6.9
7.2
Stiffness to Weight: Bending, points 18
19
Strength to Weight: Axial, points 9.9
12 to 22
Strength to Weight: Bending, points 12
13 to 21
Thermal Diffusivity, mm2/s 21
37
Thermal Shock Resistance, points 11
11 to 22

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0 to 0.010
0
Antimony (Sb), % 0 to 0.15
0
Copper (Cu), % 85 to 89
62 to 65
Iron (Fe), % 0 to 0.2
0 to 0.1
Lead (Pb), % 0 to 0.7
0.25 to 0.7
Manganese (Mn), % 0 to 0.2
0
Nickel (Ni), % 0 to 2.0
0
Phosphorus (P), % 0 to 0.6
0
Silicon (Si), % 0 to 0.010
0
Sulfur (S), % 0 to 0.050
0
Tin (Sn), % 10.5 to 13
0
Zinc (Zn), % 0 to 0.5
33.8 to 37.8
Residuals, % 0
0 to 0.4