MakeItFrom.com
Menu (ESC)

CC483K Bronze vs. C40500 Penny Bronze

Both CC483K bronze and C40500 penny bronze are copper alloys. They have 88% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is CC483K bronze and the bottom bar is C40500 penny bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 6.4
3.0 to 49
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 40
43
Tensile Strength: Ultimate (UTS), MPa 310
270 to 540
Tensile Strength: Yield (Proof), MPa 170
79 to 520

Thermal Properties

Latent Heat of Fusion, J/g 190
200
Maximum Temperature: Mechanical, °C 170
190
Melting Completion (Liquidus), °C 990
1060
Melting Onset (Solidus), °C 870
1020
Specific Heat Capacity, J/kg-K 370
380
Thermal Conductivity, W/m-K 68
160
Thermal Expansion, µm/m-K 18
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
41
Electrical Conductivity: Equal Weight (Specific), % IACS 10
42

Otherwise Unclassified Properties

Base Metal Price, % relative 36
30
Density, g/cm3 8.7
8.8
Embodied Carbon, kg CO2/kg material 3.8
2.7
Embodied Energy, MJ/kg 62
43
Embodied Water, L/kg 400
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17
16 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 130
28 to 1200
Stiffness to Weight: Axial, points 6.9
7.2
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 9.9
8.5 to 17
Strength to Weight: Bending, points 12
10 to 17
Thermal Diffusivity, mm2/s 21
48
Thermal Shock Resistance, points 11
9.5 to 19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0 to 0.010
0
Antimony (Sb), % 0 to 0.15
0
Copper (Cu), % 85 to 89
94 to 96
Iron (Fe), % 0 to 0.2
0 to 0.050
Lead (Pb), % 0 to 0.7
0 to 0.050
Manganese (Mn), % 0 to 0.2
0
Nickel (Ni), % 0 to 2.0
0
Phosphorus (P), % 0 to 0.6
0
Silicon (Si), % 0 to 0.010
0
Sulfur (S), % 0 to 0.050
0
Tin (Sn), % 10.5 to 13
0.7 to 1.3
Zinc (Zn), % 0 to 0.5
2.1 to 5.3
Residuals, % 0
0 to 0.5