MakeItFrom.com
Menu (ESC)

CC483K Bronze vs. C48600 Brass

Both CC483K bronze and C48600 brass are copper alloys. They have 62% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is CC483K bronze and the bottom bar is C48600 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
100
Elongation at Break, % 6.4
20 to 25
Poisson's Ratio 0.34
0.31
Shear Modulus, GPa 40
39
Tensile Strength: Ultimate (UTS), MPa 310
280 to 360
Tensile Strength: Yield (Proof), MPa 170
110 to 170

Thermal Properties

Latent Heat of Fusion, J/g 190
170
Maximum Temperature: Mechanical, °C 170
120
Melting Completion (Liquidus), °C 990
900
Melting Onset (Solidus), °C 870
890
Specific Heat Capacity, J/kg-K 370
380
Thermal Conductivity, W/m-K 68
110
Thermal Expansion, µm/m-K 18
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
25
Electrical Conductivity: Equal Weight (Specific), % IACS 10
28

Otherwise Unclassified Properties

Base Metal Price, % relative 36
24
Density, g/cm3 8.7
8.1
Embodied Carbon, kg CO2/kg material 3.8
2.8
Embodied Energy, MJ/kg 62
47
Embodied Water, L/kg 400
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17
55 to 59
Resilience: Unit (Modulus of Resilience), kJ/m3 130
61 to 140
Stiffness to Weight: Axial, points 6.9
7.1
Stiffness to Weight: Bending, points 18
19
Strength to Weight: Axial, points 9.9
9.5 to 12
Strength to Weight: Bending, points 12
12 to 14
Thermal Diffusivity, mm2/s 21
36
Thermal Shock Resistance, points 11
9.3 to 12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0 to 0.010
0
Antimony (Sb), % 0 to 0.15
0
Arsenic (As), % 0
0.020 to 0.25
Copper (Cu), % 85 to 89
59 to 62
Iron (Fe), % 0 to 0.2
0
Lead (Pb), % 0 to 0.7
1.0 to 2.5
Manganese (Mn), % 0 to 0.2
0
Nickel (Ni), % 0 to 2.0
0
Phosphorus (P), % 0 to 0.6
0
Silicon (Si), % 0 to 0.010
0
Sulfur (S), % 0 to 0.050
0
Tin (Sn), % 10.5 to 13
0.3 to 1.5
Zinc (Zn), % 0 to 0.5
33.4 to 39.7
Residuals, % 0
0 to 0.4