MakeItFrom.com
Menu (ESC)

CC484K Bronze vs. AISI 201LN Stainless Steel

CC484K bronze belongs to the copper alloys classification, while AISI 201LN stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is CC484K bronze and the bottom bar is AISI 201LN stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 100
210 to 320
Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 11
25 to 51
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 41
77
Tensile Strength: Ultimate (UTS), MPa 330
740 to 1060
Tensile Strength: Yield (Proof), MPa 200
350 to 770

Thermal Properties

Latent Heat of Fusion, J/g 190
280
Maximum Temperature: Mechanical, °C 170
880
Melting Completion (Liquidus), °C 1000
1410
Melting Onset (Solidus), °C 870
1370
Specific Heat Capacity, J/kg-K 370
480
Thermal Conductivity, W/m-K 70
15
Thermal Expansion, µm/m-K 18
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.1
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 9.3
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 37
12
Density, g/cm3 8.7
7.7
Embodied Carbon, kg CO2/kg material 3.9
2.6
Embodied Energy, MJ/kg 64
38
Embodied Water, L/kg 400
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 32
230 to 310
Resilience: Unit (Modulus of Resilience), kJ/m3 180
310 to 1520
Stiffness to Weight: Axial, points 6.9
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 10
27 to 38
Strength to Weight: Bending, points 12
24 to 30
Thermal Diffusivity, mm2/s 22
4.0
Thermal Shock Resistance, points 12
16 to 23

Alloy Composition

Aluminum (Al), % 0 to 0.010
0
Antimony (Sb), % 0 to 0.1
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
16 to 17.5
Copper (Cu), % 84.5 to 87.5
0 to 1.0
Iron (Fe), % 0 to 0.2
67.9 to 73.5
Lead (Pb), % 0 to 0.3
0
Manganese (Mn), % 0 to 0.2
6.4 to 7.5
Nickel (Ni), % 1.5 to 2.5
4.0 to 5.0
Nitrogen (N), % 0
0.1 to 0.25
Phosphorus (P), % 0.050 to 0.4
0 to 0.045
Silicon (Si), % 0 to 0.010
0 to 0.75
Sulfur (S), % 0 to 0.050
0 to 0.015
Tin (Sn), % 11 to 13
0
Zinc (Zn), % 0 to 0.4
0