MakeItFrom.com
Menu (ESC)

CC484K Bronze vs. AWS E90C-K3

CC484K bronze belongs to the copper alloys classification, while AWS E90C-K3 belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is CC484K bronze and the bottom bar is AWS E90C-K3.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 11
55
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 41
73
Tensile Strength: Ultimate (UTS), MPa 330
710
Tensile Strength: Yield (Proof), MPa 200
600

Thermal Properties

Latent Heat of Fusion, J/g 190
250
Melting Completion (Liquidus), °C 1000
1460
Melting Onset (Solidus), °C 870
1410
Specific Heat Capacity, J/kg-K 370
470
Thermal Conductivity, W/m-K 70
48
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.1
7.9
Electrical Conductivity: Equal Weight (Specific), % IACS 9.3
9.0

Otherwise Unclassified Properties

Base Metal Price, % relative 37
3.4
Density, g/cm3 8.7
7.8
Embodied Carbon, kg CO2/kg material 3.9
1.7
Embodied Energy, MJ/kg 64
23
Embodied Water, L/kg 400
53

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 32
370
Resilience: Unit (Modulus of Resilience), kJ/m3 180
980
Stiffness to Weight: Axial, points 6.9
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 10
25
Strength to Weight: Bending, points 12
22
Thermal Diffusivity, mm2/s 22
13
Thermal Shock Resistance, points 12
21

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0 to 0.010
0
Antimony (Sb), % 0 to 0.1
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
0 to 0.15
Copper (Cu), % 84.5 to 87.5
0 to 0.35
Iron (Fe), % 0 to 0.2
92.6 to 98.5
Lead (Pb), % 0 to 0.3
0
Manganese (Mn), % 0 to 0.2
0.75 to 2.3
Molybdenum (Mo), % 0
0.25 to 0.65
Nickel (Ni), % 1.5 to 2.5
0.5 to 2.5
Phosphorus (P), % 0.050 to 0.4
0 to 0.025
Silicon (Si), % 0 to 0.010
0 to 0.8
Sulfur (S), % 0 to 0.050
0 to 0.025
Tin (Sn), % 11 to 13
0
Vanadium (V), % 0
0 to 0.030
Zinc (Zn), % 0 to 0.4
0
Residuals, % 0
0 to 0.5