MakeItFrom.com
Menu (ESC)

CC484K Bronze vs. EN 1.4542 Stainless Steel

CC484K bronze belongs to the copper alloys classification, while EN 1.4542 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is CC484K bronze and the bottom bar is EN 1.4542 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 11
5.7 to 20
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 41
76
Tensile Strength: Ultimate (UTS), MPa 330
880 to 1470
Tensile Strength: Yield (Proof), MPa 200
580 to 1300

Thermal Properties

Latent Heat of Fusion, J/g 190
280
Maximum Temperature: Mechanical, °C 170
860
Melting Completion (Liquidus), °C 1000
1430
Melting Onset (Solidus), °C 870
1380
Specific Heat Capacity, J/kg-K 370
470
Thermal Conductivity, W/m-K 70
16
Thermal Expansion, µm/m-K 18
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.1
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 9.3
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 37
13
Density, g/cm3 8.7
7.8
Embodied Carbon, kg CO2/kg material 3.9
2.7
Embodied Energy, MJ/kg 64
39
Embodied Water, L/kg 400
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 32
62 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 180
880 to 4360
Stiffness to Weight: Axial, points 6.9
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 10
31 to 52
Strength to Weight: Bending, points 12
26 to 37
Thermal Diffusivity, mm2/s 22
4.3
Thermal Shock Resistance, points 12
29 to 49

Alloy Composition

Aluminum (Al), % 0 to 0.010
0
Antimony (Sb), % 0 to 0.1
0
Carbon (C), % 0
0 to 0.070
Chromium (Cr), % 0
15 to 17
Copper (Cu), % 84.5 to 87.5
3.0 to 5.0
Iron (Fe), % 0 to 0.2
69.6 to 79
Lead (Pb), % 0 to 0.3
0
Manganese (Mn), % 0 to 0.2
0 to 1.5
Molybdenum (Mo), % 0
0 to 0.6
Nickel (Ni), % 1.5 to 2.5
3.0 to 5.0
Niobium (Nb), % 0
0 to 0.45
Phosphorus (P), % 0.050 to 0.4
0 to 0.040
Silicon (Si), % 0 to 0.010
0 to 0.7
Sulfur (S), % 0 to 0.050
0 to 0.015
Tin (Sn), % 11 to 13
0
Zinc (Zn), % 0 to 0.4
0