MakeItFrom.com
Menu (ESC)

CC484K Bronze vs. N10276 Nickel

CC484K bronze belongs to the copper alloys classification, while N10276 nickel belongs to the nickel alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is CC484K bronze and the bottom bar is N10276 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
220
Elongation at Break, % 11
47
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 41
84
Tensile Strength: Ultimate (UTS), MPa 330
780
Tensile Strength: Yield (Proof), MPa 200
320

Thermal Properties

Latent Heat of Fusion, J/g 190
320
Maximum Temperature: Mechanical, °C 170
960
Melting Completion (Liquidus), °C 1000
1370
Melting Onset (Solidus), °C 870
1320
Specific Heat Capacity, J/kg-K 370
410
Thermal Conductivity, W/m-K 70
9.1
Thermal Expansion, µm/m-K 18
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.1
1.3
Electrical Conductivity: Equal Weight (Specific), % IACS 9.3
1.3

Otherwise Unclassified Properties

Base Metal Price, % relative 37
70
Density, g/cm3 8.7
9.1
Embodied Carbon, kg CO2/kg material 3.9
13
Embodied Energy, MJ/kg 64
170
Embodied Water, L/kg 400
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 32
300
Resilience: Unit (Modulus of Resilience), kJ/m3 180
230
Stiffness to Weight: Axial, points 6.9
13
Stiffness to Weight: Bending, points 18
22
Strength to Weight: Axial, points 10
24
Strength to Weight: Bending, points 12
21
Thermal Diffusivity, mm2/s 22
2.4
Thermal Shock Resistance, points 12
23

Alloy Composition

Aluminum (Al), % 0 to 0.010
0
Antimony (Sb), % 0 to 0.1
0
Carbon (C), % 0
0 to 0.010
Chromium (Cr), % 0
14.5 to 16.5
Cobalt (Co), % 0
0 to 2.5
Copper (Cu), % 84.5 to 87.5
0
Iron (Fe), % 0 to 0.2
4.0 to 7.0
Lead (Pb), % 0 to 0.3
0
Manganese (Mn), % 0 to 0.2
0 to 0.010
Molybdenum (Mo), % 0
15 to 17
Nickel (Ni), % 1.5 to 2.5
51 to 63.5
Phosphorus (P), % 0.050 to 0.4
0 to 0.040
Silicon (Si), % 0 to 0.010
0 to 0.080
Sulfur (S), % 0 to 0.050
0 to 0.030
Tin (Sn), % 11 to 13
0
Tungsten (W), % 0
3.0 to 4.5
Vanadium (V), % 0
0 to 0.35
Zinc (Zn), % 0 to 0.4
0