MakeItFrom.com
Menu (ESC)

CC490K Brass vs. EN 1.7230 Steel

CC490K brass belongs to the copper alloys classification, while EN 1.7230 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is CC490K brass and the bottom bar is EN 1.7230 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 76
220 to 270
Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 15
11 to 12
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 40
73
Tensile Strength: Ultimate (UTS), MPa 230
720 to 910
Tensile Strength: Yield (Proof), MPa 110
510 to 740

Thermal Properties

Latent Heat of Fusion, J/g 190
250
Maximum Temperature: Mechanical, °C 160
420
Melting Completion (Liquidus), °C 980
1460
Melting Onset (Solidus), °C 910
1420
Specific Heat Capacity, J/kg-K 370
470
Thermal Conductivity, W/m-K 72
44
Thermal Expansion, µm/m-K 19
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 16
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 16
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 30
2.4
Density, g/cm3 8.8
7.8
Embodied Carbon, kg CO2/kg material 2.9
1.5
Embodied Energy, MJ/kg 47
20
Embodied Water, L/kg 340
51

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 28
79 to 97
Resilience: Unit (Modulus of Resilience), kJ/m3 54
700 to 1460
Stiffness to Weight: Axial, points 6.8
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 7.3
26 to 32
Strength to Weight: Bending, points 9.5
23 to 27
Thermal Diffusivity, mm2/s 22
12
Thermal Shock Resistance, points 8.2
21 to 27

Alloy Composition

Aluminum (Al), % 0 to 0.010
0
Antimony (Sb), % 0 to 0.3
0
Carbon (C), % 0
0.3 to 0.37
Chromium (Cr), % 0
0.8 to 1.2
Copper (Cu), % 81 to 86
0
Iron (Fe), % 0 to 0.5
96.7 to 98.3
Lead (Pb), % 3.0 to 6.0
0
Manganese (Mn), % 0
0.5 to 0.8
Molybdenum (Mo), % 0
0.15 to 0.3
Nickel (Ni), % 0 to 2.0
0
Phosphorus (P), % 0 to 0.050
0 to 0.025
Silicon (Si), % 0 to 0.010
0 to 0.6
Sulfur (S), % 0 to 0.1
0 to 0.030
Tin (Sn), % 2.0 to 3.5
0
Zinc (Zn), % 7.0 to 9.5
0