MakeItFrom.com
Menu (ESC)

CC491K Bronze vs. AWS ERTi-2

CC491K bronze belongs to the copper alloys classification, while AWS ERTi-2 belongs to the titanium alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is CC491K bronze and the bottom bar is AWS ERTi-2.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 13
20
Poisson's Ratio 0.34
0.32
Shear Modulus, GPa 40
40
Tensile Strength: Ultimate (UTS), MPa 260
340
Tensile Strength: Yield (Proof), MPa 120
280

Thermal Properties

Latent Heat of Fusion, J/g 190
420
Maximum Temperature: Mechanical, °C 160
320
Melting Completion (Liquidus), °C 980
1670
Melting Onset (Solidus), °C 900
1620
Specific Heat Capacity, J/kg-K 370
540
Thermal Conductivity, W/m-K 71
21
Thermal Expansion, µm/m-K 19
8.7

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 15
3.6
Electrical Conductivity: Equal Weight (Specific), % IACS 15
7.1

Otherwise Unclassified Properties

Base Metal Price, % relative 31
37
Density, g/cm3 8.9
4.5
Embodied Carbon, kg CO2/kg material 3.1
31
Embodied Energy, MJ/kg 51
510
Embodied Water, L/kg 350
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 27
64
Resilience: Unit (Modulus of Resilience), kJ/m3 67
360
Stiffness to Weight: Axial, points 6.7
13
Stiffness to Weight: Bending, points 18
35
Strength to Weight: Axial, points 8.1
21
Strength to Weight: Bending, points 10
24
Thermal Diffusivity, mm2/s 22
8.7
Thermal Shock Resistance, points 9.3
27

Alloy Composition

Aluminum (Al), % 0 to 0.010
0
Antimony (Sb), % 0 to 0.25
0
Carbon (C), % 0
0 to 0.030
Copper (Cu), % 81 to 87
0
Hydrogen (H), % 0
0 to 0.0080
Iron (Fe), % 0 to 0.3
0 to 0.12
Lead (Pb), % 4.0 to 6.0
0
Nickel (Ni), % 0 to 2.0
0
Nitrogen (N), % 0
0 to 0.015
Oxygen (O), % 0
0.080 to 0.16
Phosphorus (P), % 0 to 0.1
0
Silicon (Si), % 0 to 0.010
0
Sulfur (S), % 0 to 0.1
0
Tin (Sn), % 4.0 to 6.0
0
Titanium (Ti), % 0
99.667 to 99.92
Zinc (Zn), % 4.0 to 6.0
0