MakeItFrom.com
Menu (ESC)

CC493K Bronze vs. EN 1.4525 Stainless Steel

CC493K bronze belongs to the copper alloys classification, while EN 1.4525 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is CC493K bronze and the bottom bar is EN 1.4525 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 14
5.6 to 13
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 39
76
Tensile Strength: Ultimate (UTS), MPa 270
1030 to 1250
Tensile Strength: Yield (Proof), MPa 140
840 to 1120

Thermal Properties

Latent Heat of Fusion, J/g 180
280
Maximum Temperature: Mechanical, °C 160
860
Melting Completion (Liquidus), °C 960
1430
Melting Onset (Solidus), °C 880
1390
Specific Heat Capacity, J/kg-K 360
480
Thermal Conductivity, W/m-K 61
18
Thermal Expansion, µm/m-K 19
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 12
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 32
13
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 3.3
2.8
Embodied Energy, MJ/kg 53
39
Embodied Water, L/kg 370
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 33
68 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 89
1820 to 3230
Stiffness to Weight: Axial, points 6.5
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 8.6
36 to 45
Strength to Weight: Bending, points 11
29 to 33
Thermal Diffusivity, mm2/s 19
4.7
Thermal Shock Resistance, points 10
34 to 41

Alloy Composition

Aluminum (Al), % 0 to 0.010
0
Antimony (Sb), % 0 to 0.3
0
Carbon (C), % 0
0 to 0.070
Chromium (Cr), % 0
15 to 17
Copper (Cu), % 79 to 86
2.5 to 4.0
Iron (Fe), % 0 to 0.2
70.4 to 79
Lead (Pb), % 5.0 to 8.0
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.8
Nickel (Ni), % 0 to 2.0
3.5 to 5.5
Niobium (Nb), % 0
0 to 0.35
Nitrogen (N), % 0
0 to 0.050
Phosphorus (P), % 0 to 0.1
0 to 0.035
Silicon (Si), % 0 to 0.010
0 to 0.8
Sulfur (S), % 0 to 0.1
0 to 0.025
Tin (Sn), % 5.2 to 8.0
0
Zinc (Zn), % 2.0 to 5.0
0