MakeItFrom.com
Menu (ESC)

CC494K Bronze vs. C41500 Brass

Both CC494K bronze and C41500 brass are copper alloys. They have 85% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is CC494K bronze and the bottom bar is C41500 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
110
Elongation at Break, % 7.6
2.0 to 42
Poisson's Ratio 0.35
0.33
Shear Modulus, GPa 39
42
Tensile Strength: Ultimate (UTS), MPa 210
340 to 560
Tensile Strength: Yield (Proof), MPa 94
190 to 550

Thermal Properties

Latent Heat of Fusion, J/g 180
200
Maximum Temperature: Mechanical, °C 160
180
Melting Completion (Liquidus), °C 970
1030
Melting Onset (Solidus), °C 890
1010
Specific Heat Capacity, J/kg-K 360
380
Thermal Conductivity, W/m-K 63
120
Thermal Expansion, µm/m-K 19
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 16
28
Electrical Conductivity: Equal Weight (Specific), % IACS 16
29

Otherwise Unclassified Properties

Base Metal Price, % relative 31
30
Density, g/cm3 9.1
8.7
Embodied Carbon, kg CO2/kg material 3.1
2.8
Embodied Energy, MJ/kg 50
45
Embodied Water, L/kg 360
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 13
11 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 43
160 to 1340
Stiffness to Weight: Axial, points 6.4
7.1
Stiffness to Weight: Bending, points 17
18
Strength to Weight: Axial, points 6.5
11 to 18
Strength to Weight: Bending, points 8.8
12 to 17
Thermal Diffusivity, mm2/s 19
37
Thermal Shock Resistance, points 7.8
12 to 20

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0 to 0.010
0
Antimony (Sb), % 0 to 0.5
0
Copper (Cu), % 78 to 87
89 to 93
Iron (Fe), % 0 to 0.25
0 to 0.050
Lead (Pb), % 8.0 to 10
0 to 0.1
Manganese (Mn), % 0 to 0.2
0
Nickel (Ni), % 0 to 2.0
0
Phosphorus (P), % 0 to 0.1
0
Silicon (Si), % 0 to 0.010
0
Sulfur (S), % 0 to 0.1
0
Tin (Sn), % 4.0 to 6.0
1.5 to 2.2
Zinc (Zn), % 0 to 2.0
4.2 to 9.5
Residuals, % 0
0 to 0.5