CC495K Bronze vs. EN 1.5522 Steel
CC495K bronze belongs to the copper alloys classification, while EN 1.5522 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.
For each property being compared, the top bar is CC495K bronze and the bottom bar is EN 1.5522 steel.
Metric UnitsUS Customary Units
Mechanical Properties
| Brinell Hardness | 76 | |
| 140 to 190 |
| Elastic (Young's, Tensile) Modulus, GPa | 100 | |
| 190 |
| Elongation at Break, % | 7.0 | |
| 11 to 21 |
| Poisson's Ratio | 0.35 | |
| 0.29 |
| Shear Modulus, GPa | 37 | |
| 73 |
| Tensile Strength: Ultimate (UTS), MPa | 240 | |
| 450 to 1490 |
| Tensile Strength: Yield (Proof), MPa | 120 | |
| 300 to 520 |
Thermal Properties
| Latent Heat of Fusion, J/g | 180 | |
| 250 |
| Maximum Temperature: Mechanical, °C | 140 | |
| 400 |
| Melting Completion (Liquidus), °C | 930 | |
| 1460 |
| Melting Onset (Solidus), °C | 820 | |
| 1420 |
| Specific Heat Capacity, J/kg-K | 350 | |
| 470 |
| Thermal Conductivity, W/m-K | 48 | |
| 51 |
| Thermal Expansion, µm/m-K | 19 | |
| 13 |
Electrical Properties
| Electrical Conductivity: Equal Volume, % IACS | 10 | |
| 7.1 |
| Electrical Conductivity: Equal Weight (Specific), % IACS | 10 | |
| 8.1 |
Otherwise Unclassified Properties
| Base Metal Price, % relative | 33 | |
| 1.9 |
| Density, g/cm3 | 9.0 | |
| 7.8 |
| Embodied Carbon, kg CO2/kg material | 3.6 | |
| 1.4 |
| Embodied Energy, MJ/kg | 58 | |
| 19 |
| Embodied Water, L/kg | 400 | |
| 47 |
Common Calculations
| Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 14 | |
| 45 to 250 |
| Resilience: Unit (Modulus of Resilience), kJ/m3 | 68 | |
| 250 to 720 |
| Stiffness to Weight: Axial, points | 6.2 | |
| 13 |
| Stiffness to Weight: Bending, points | 17 | |
| 24 |
| Strength to Weight: Axial, points | 7.3 | |
| 16 to 53 |
| Strength to Weight: Bending, points | 9.4 | |
| 17 to 37 |
| Thermal Diffusivity, mm2/s | 15 | |
| 14 |
| Thermal Shock Resistance, points | 8.8 | |
| 13 to 44 |
Alloy Composition
| Aluminum (Al), % | 0 to 0.010 | |
| 0 |
| Antimony (Sb), % | 0 to 0.5 | |
| 0 |
| Boron (B), % | 0 | |
| 0.00080 to 0.0050 |
| Carbon (C), % | 0 | |
| 0.2 to 0.24 |
| Copper (Cu), % | 76 to 82 | |
| 0 to 0.25 |
| Iron (Fe), % | 0 to 0.25 | |
| 98 to 98.9 |
| Lead (Pb), % | 8.0 to 11 | |
| 0 |
| Manganese (Mn), % | 0 to 0.2 | |
| 0.9 to 1.2 |
| Nickel (Ni), % | 0 to 2.0 | |
| 0 |
| Phosphorus (P), % | 0 to 0.1 | |
| 0 to 0.025 |
| Silicon (Si), % | 0 to 0.010 | |
| 0 to 0.3 |
| Sulfur (S), % | 0 to 0.1 | |
| 0 to 0.025 |
| Tin (Sn), % | 9.0 to 11 | |
| 0 |
| Zinc (Zn), % | 0 to 2.0 | |
| 0 |