MakeItFrom.com
Menu (ESC)

CC495K Bronze vs. C43500 Brass

Both CC495K bronze and C43500 brass are copper alloys. They have 81% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is CC495K bronze and the bottom bar is C43500 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
110
Elongation at Break, % 7.0
8.5 to 46
Poisson's Ratio 0.35
0.32
Shear Modulus, GPa 37
42
Tensile Strength: Ultimate (UTS), MPa 240
320 to 530
Tensile Strength: Yield (Proof), MPa 120
120 to 480

Thermal Properties

Latent Heat of Fusion, J/g 180
190
Maximum Temperature: Mechanical, °C 140
160
Melting Completion (Liquidus), °C 930
1000
Melting Onset (Solidus), °C 820
970
Specific Heat Capacity, J/kg-K 350
380
Thermal Conductivity, W/m-K 48
120
Thermal Expansion, µm/m-K 19
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
28
Electrical Conductivity: Equal Weight (Specific), % IACS 10
30

Otherwise Unclassified Properties

Base Metal Price, % relative 33
28
Density, g/cm3 9.0
8.5
Embodied Carbon, kg CO2/kg material 3.6
2.7
Embodied Energy, MJ/kg 58
45
Embodied Water, L/kg 400
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 14
44 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 68
65 to 1040
Stiffness to Weight: Axial, points 6.2
7.2
Stiffness to Weight: Bending, points 17
19
Strength to Weight: Axial, points 7.3
10 to 17
Strength to Weight: Bending, points 9.4
12 to 17
Thermal Diffusivity, mm2/s 15
37
Thermal Shock Resistance, points 8.8
11 to 18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0 to 0.010
0
Antimony (Sb), % 0 to 0.5
0
Copper (Cu), % 76 to 82
79 to 83
Iron (Fe), % 0 to 0.25
0 to 0.050
Lead (Pb), % 8.0 to 11
0 to 0.090
Manganese (Mn), % 0 to 0.2
0
Nickel (Ni), % 0 to 2.0
0
Phosphorus (P), % 0 to 0.1
0
Silicon (Si), % 0 to 0.010
0
Sulfur (S), % 0 to 0.1
0
Tin (Sn), % 9.0 to 11
0.6 to 1.2
Zinc (Zn), % 0 to 2.0
15.4 to 20.4
Residuals, % 0
0 to 0.3