MakeItFrom.com
Menu (ESC)

CC496K Bronze vs. AWS E320LR

CC496K bronze belongs to the copper alloys classification, while AWS E320LR belongs to the iron alloys. There are 20 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown.

For each property being compared, the top bar is CC496K bronze and the bottom bar is AWS E320LR.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 97
200
Elongation at Break, % 8.6
34
Poisson's Ratio 0.35
0.28
Shear Modulus, GPa 36
77
Tensile Strength: Ultimate (UTS), MPa 210
580

Thermal Properties

Latent Heat of Fusion, J/g 170
300
Melting Completion (Liquidus), °C 900
1410
Melting Onset (Solidus), °C 820
1360
Specific Heat Capacity, J/kg-K 340
460
Thermal Expansion, µm/m-K 19
14

Otherwise Unclassified Properties

Base Metal Price, % relative 31
36
Density, g/cm3 9.2
8.2
Embodied Carbon, kg CO2/kg material 3.3
6.2
Embodied Energy, MJ/kg 52
87
Embodied Water, L/kg 380
220

Common Calculations

Stiffness to Weight: Axial, points 5.9
13
Stiffness to Weight: Bending, points 17
24
Strength to Weight: Axial, points 6.5
20
Strength to Weight: Bending, points 8.6
19
Thermal Shock Resistance, points 8.1
15

Alloy Composition

Aluminum (Al), % 0 to 0.010
0
Antimony (Sb), % 0 to 0.5
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
19 to 21
Copper (Cu), % 72 to 79.5
3.0 to 4.0
Iron (Fe), % 0 to 0.25
32.7 to 42.5
Lead (Pb), % 13 to 17
0
Manganese (Mn), % 0 to 0.2
1.5 to 2.5
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0.5 to 2.0
32 to 36
Niobium (Nb), % 0
0 to 0.4
Phosphorus (P), % 0 to 0.1
0 to 0.020
Silicon (Si), % 0 to 0.010
0 to 0.3
Sulfur (S), % 0 to 0.1
0 to 0.015
Tin (Sn), % 6.0 to 8.0
0
Zinc (Zn), % 0 to 2.0
0