MakeItFrom.com
Menu (ESC)

CC496K Bronze vs. N06002 Nickel

CC496K bronze belongs to the copper alloys classification, while N06002 nickel belongs to the nickel alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is CC496K bronze and the bottom bar is N06002 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 97
210
Elongation at Break, % 8.6
41
Poisson's Ratio 0.35
0.28
Shear Modulus, GPa 36
81
Tensile Strength: Ultimate (UTS), MPa 210
760
Tensile Strength: Yield (Proof), MPa 99
310

Thermal Properties

Latent Heat of Fusion, J/g 170
320
Maximum Temperature: Mechanical, °C 140
990
Melting Completion (Liquidus), °C 900
1360
Melting Onset (Solidus), °C 820
1260
Specific Heat Capacity, J/kg-K 340
450
Thermal Conductivity, W/m-K 52
9.9
Thermal Expansion, µm/m-K 19
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 11
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 31
55
Density, g/cm3 9.2
8.5
Embodied Carbon, kg CO2/kg material 3.3
9.3
Embodied Energy, MJ/kg 52
130
Embodied Water, L/kg 380
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 15
250
Resilience: Unit (Modulus of Resilience), kJ/m3 50
230
Stiffness to Weight: Axial, points 5.9
14
Stiffness to Weight: Bending, points 17
23
Strength to Weight: Axial, points 6.5
25
Strength to Weight: Bending, points 8.6
22
Thermal Diffusivity, mm2/s 17
2.6
Thermal Shock Resistance, points 8.1
19

Alloy Composition

Aluminum (Al), % 0 to 0.010
0
Antimony (Sb), % 0 to 0.5
0
Carbon (C), % 0
0.050 to 0.15
Chromium (Cr), % 0
20.5 to 23
Cobalt (Co), % 0
0.5 to 2.5
Copper (Cu), % 72 to 79.5
0
Iron (Fe), % 0 to 0.25
17 to 20
Lead (Pb), % 13 to 17
0
Manganese (Mn), % 0 to 0.2
0 to 1.0
Molybdenum (Mo), % 0
8.0 to 10
Nickel (Ni), % 0.5 to 2.0
42.3 to 54
Phosphorus (P), % 0 to 0.1
0 to 0.040
Silicon (Si), % 0 to 0.010
0 to 1.0
Sulfur (S), % 0 to 0.1
0 to 0.030
Tin (Sn), % 6.0 to 8.0
0
Tungsten (W), % 0
0.2 to 1.0
Zinc (Zn), % 0 to 2.0
0