MakeItFrom.com
Menu (ESC)

CC498K Bronze vs. ACI-ASTM CH20 Steel

CC498K bronze belongs to the copper alloys classification, while ACI-ASTM CH20 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is CC498K bronze and the bottom bar is ACI-ASTM CH20 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 78
190
Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 14
38
Poisson's Ratio 0.34
0.27
Shear Modulus, GPa 41
78
Tensile Strength: Ultimate (UTS), MPa 260
610
Tensile Strength: Yield (Proof), MPa 130
350

Thermal Properties

Latent Heat of Fusion, J/g 190
310
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 1000
1410
Melting Onset (Solidus), °C 920
1430
Specific Heat Capacity, J/kg-K 370
480
Thermal Conductivity, W/m-K 73
14
Thermal Expansion, µm/m-K 18
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 10
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 32
20
Density, g/cm3 8.8
7.8
Embodied Carbon, kg CO2/kg material 3.2
3.7
Embodied Energy, MJ/kg 52
53
Embodied Water, L/kg 360
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 30
200
Resilience: Unit (Modulus of Resilience), kJ/m3 72
300
Stiffness to Weight: Axial, points 6.9
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 8.1
22
Strength to Weight: Bending, points 10
21
Thermal Diffusivity, mm2/s 22
3.7
Thermal Shock Resistance, points 9.3
15

Alloy Composition

Aluminum (Al), % 0 to 0.010
0
Antimony (Sb), % 0 to 0.25
0
Carbon (C), % 0
0 to 0.2
Chromium (Cr), % 0
22 to 26
Copper (Cu), % 85 to 90
0
Iron (Fe), % 0 to 0.25
54.7 to 66
Lead (Pb), % 1.0 to 2.0
0
Manganese (Mn), % 0
0 to 1.5
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0 to 1.0
12 to 15
Phosphorus (P), % 0 to 0.050
0 to 0.040
Silicon (Si), % 0 to 0.010
0 to 2.0
Sulfur (S), % 0 to 0.1
0 to 0.040
Tin (Sn), % 5.5 to 6.5
0
Zinc (Zn), % 3.0 to 5.0
0