MakeItFrom.com
Menu (ESC)

CC498K Bronze vs. C22000 Bronze

Both CC498K bronze and C22000 bronze are copper alloys. They have a moderately high 92% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is CC498K bronze and the bottom bar is C22000 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 14
1.9 to 45
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 41
42
Tensile Strength: Ultimate (UTS), MPa 260
260 to 520
Tensile Strength: Yield (Proof), MPa 130
69 to 500

Thermal Properties

Latent Heat of Fusion, J/g 190
200
Maximum Temperature: Mechanical, °C 170
180
Melting Completion (Liquidus), °C 1000
1040
Melting Onset (Solidus), °C 920
1020
Specific Heat Capacity, J/kg-K 370
390
Thermal Conductivity, W/m-K 73
190
Thermal Expansion, µm/m-K 18
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
44
Electrical Conductivity: Equal Weight (Specific), % IACS 10
45

Otherwise Unclassified Properties

Base Metal Price, % relative 32
29
Density, g/cm3 8.8
8.7
Embodied Carbon, kg CO2/kg material 3.2
2.6
Embodied Energy, MJ/kg 52
42
Embodied Water, L/kg 360
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 30
3.7 to 230
Resilience: Unit (Modulus of Resilience), kJ/m3 72
21 to 1110
Stiffness to Weight: Axial, points 6.9
7.2
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 8.1
8.1 to 17
Strength to Weight: Bending, points 10
10 to 17
Thermal Diffusivity, mm2/s 22
56
Thermal Shock Resistance, points 9.3
8.8 to 18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0 to 0.010
0
Antimony (Sb), % 0 to 0.25
0
Copper (Cu), % 85 to 90
89 to 91
Iron (Fe), % 0 to 0.25
0 to 0.050
Lead (Pb), % 1.0 to 2.0
0 to 0.050
Nickel (Ni), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.050
0
Silicon (Si), % 0 to 0.010
0
Sulfur (S), % 0 to 0.1
0
Tin (Sn), % 5.5 to 6.5
0
Zinc (Zn), % 3.0 to 5.0
8.7 to 11
Residuals, % 0
0 to 0.2