MakeItFrom.com
Menu (ESC)

CC498K Bronze vs. S13800 Stainless Steel

CC498K bronze belongs to the copper alloys classification, while S13800 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is CC498K bronze and the bottom bar is S13800 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 78
290 to 480
Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 14
11 to 18
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 41
77
Tensile Strength: Ultimate (UTS), MPa 260
980 to 1730
Tensile Strength: Yield (Proof), MPa 130
660 to 1580

Thermal Properties

Latent Heat of Fusion, J/g 190
280
Maximum Temperature: Mechanical, °C 170
810
Melting Completion (Liquidus), °C 1000
1450
Melting Onset (Solidus), °C 920
1410
Specific Heat Capacity, J/kg-K 370
470
Thermal Conductivity, W/m-K 73
16
Thermal Expansion, µm/m-K 18
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 10
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 32
15
Density, g/cm3 8.8
7.9
Embodied Carbon, kg CO2/kg material 3.2
3.4
Embodied Energy, MJ/kg 52
46
Embodied Water, L/kg 360
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 30
150 to 190
Resilience: Unit (Modulus of Resilience), kJ/m3 72
1090 to 5490
Stiffness to Weight: Axial, points 6.9
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 8.1
35 to 61
Strength to Weight: Bending, points 10
28 to 41
Thermal Diffusivity, mm2/s 22
4.3
Thermal Shock Resistance, points 9.3
33 to 58

Alloy Composition

Aluminum (Al), % 0 to 0.010
0.9 to 1.4
Antimony (Sb), % 0 to 0.25
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
12.3 to 13.2
Copper (Cu), % 85 to 90
0
Iron (Fe), % 0 to 0.25
73.6 to 77.3
Lead (Pb), % 1.0 to 2.0
0
Manganese (Mn), % 0
0 to 0.2
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0 to 1.0
7.5 to 8.5
Nitrogen (N), % 0
0 to 0.010
Phosphorus (P), % 0 to 0.050
0 to 0.010
Silicon (Si), % 0 to 0.010
0 to 0.1
Sulfur (S), % 0 to 0.1
0 to 0.0080
Tin (Sn), % 5.5 to 6.5
0
Zinc (Zn), % 3.0 to 5.0
0