MakeItFrom.com
Menu (ESC)

CC498K Bronze vs. S17400 Stainless Steel

CC498K bronze belongs to the copper alloys classification, while S17400 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is CC498K bronze and the bottom bar is S17400 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 78
280 to 440
Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 14
11 to 21
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 41
75
Tensile Strength: Ultimate (UTS), MPa 260
910 to 1390
Tensile Strength: Yield (Proof), MPa 130
580 to 1250

Thermal Properties

Latent Heat of Fusion, J/g 190
280
Maximum Temperature: Mechanical, °C 170
850
Melting Completion (Liquidus), °C 1000
1440
Melting Onset (Solidus), °C 920
1400
Specific Heat Capacity, J/kg-K 370
480
Thermal Conductivity, W/m-K 73
17
Thermal Expansion, µm/m-K 18
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 10
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 32
14
Density, g/cm3 8.8
7.8
Embodied Carbon, kg CO2/kg material 3.2
2.7
Embodied Energy, MJ/kg 52
39
Embodied Water, L/kg 360
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 30
140 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 72
880 to 4060
Stiffness to Weight: Axial, points 6.9
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 8.1
32 to 49
Strength to Weight: Bending, points 10
27 to 35
Thermal Diffusivity, mm2/s 22
4.5
Thermal Shock Resistance, points 9.3
30 to 46

Alloy Composition

Aluminum (Al), % 0 to 0.010
0
Antimony (Sb), % 0 to 0.25
0
Carbon (C), % 0
0 to 0.070
Chromium (Cr), % 0
15 to 17
Copper (Cu), % 85 to 90
3.0 to 5.0
Iron (Fe), % 0 to 0.25
70.4 to 78.9
Lead (Pb), % 1.0 to 2.0
0
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0 to 1.0
3.0 to 5.0
Niobium (Nb), % 0
0.15 to 0.45
Phosphorus (P), % 0 to 0.050
0 to 0.040
Silicon (Si), % 0 to 0.010
0 to 1.0
Sulfur (S), % 0 to 0.1
0 to 0.030
Tin (Sn), % 5.5 to 6.5
0
Zinc (Zn), % 3.0 to 5.0
0