MakeItFrom.com
Menu (ESC)

CC750S Brass vs. AISI 304Cu Stainless Steel

CC750S brass belongs to the copper alloys classification, while AISI 304Cu stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is CC750S brass and the bottom bar is AISI 304Cu stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 54
160
Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 13
45
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 40
76
Tensile Strength: Ultimate (UTS), MPa 200
530
Tensile Strength: Yield (Proof), MPa 80
210

Thermal Properties

Latent Heat of Fusion, J/g 170
290
Maximum Temperature: Mechanical, °C 130
930
Melting Completion (Liquidus), °C 860
1410
Melting Onset (Solidus), °C 810
1370
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 110
13
Thermal Expansion, µm/m-K 20
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 24
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 26
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 25
16
Density, g/cm3 8.2
7.8
Embodied Carbon, kg CO2/kg material 2.8
3.0
Embodied Energy, MJ/kg 46
43
Embodied Water, L/kg 330
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 22
190
Resilience: Unit (Modulus of Resilience), kJ/m3 30
110
Stiffness to Weight: Axial, points 7.1
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 6.8
19
Strength to Weight: Bending, points 9.3
19
Thermal Diffusivity, mm2/s 35
3.5
Thermal Shock Resistance, points 6.7
12

Alloy Composition

Aluminum (Al), % 0 to 0.1
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
17 to 19
Copper (Cu), % 62 to 67
3.0 to 4.0
Iron (Fe), % 0 to 0.8
63.9 to 72
Lead (Pb), % 1.0 to 3.0
0
Manganese (Mn), % 0 to 0.2
0 to 2.0
Nickel (Ni), % 0 to 1.0
8.0 to 10
Phosphorus (P), % 0 to 0.050
0 to 0.045
Silicon (Si), % 0 to 0.050
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 1.5
0
Zinc (Zn), % 26.3 to 36
0