MakeItFrom.com
Menu (ESC)

CC750S Brass vs. SAE-AISI 51B60 Steel

CC750S brass belongs to the copper alloys classification, while SAE-AISI 51B60 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is CC750S brass and the bottom bar is SAE-AISI 51B60 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 54
200
Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 13
12 to 21
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 40
73
Tensile Strength: Ultimate (UTS), MPa 200
660
Tensile Strength: Yield (Proof), MPa 80
400 to 550

Thermal Properties

Latent Heat of Fusion, J/g 170
250
Maximum Temperature: Mechanical, °C 130
420
Melting Completion (Liquidus), °C 860
1450
Melting Onset (Solidus), °C 810
1410
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 110
43
Thermal Expansion, µm/m-K 20
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 24
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 26
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 25
2.1
Density, g/cm3 8.2
7.8
Embodied Carbon, kg CO2/kg material 2.8
1.4
Embodied Energy, MJ/kg 46
19
Embodied Water, L/kg 330
49

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 22
73 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 30
420 to 800
Stiffness to Weight: Axial, points 7.1
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 6.8
23
Strength to Weight: Bending, points 9.3
22
Thermal Diffusivity, mm2/s 35
12
Thermal Shock Resistance, points 6.7
19

Alloy Composition

Aluminum (Al), % 0 to 0.1
0
Boron (B), % 0
0.00050 to 0.0030
Carbon (C), % 0
0.56 to 0.64
Chromium (Cr), % 0
0.7 to 0.9
Copper (Cu), % 62 to 67
0
Iron (Fe), % 0 to 0.8
97 to 97.8
Lead (Pb), % 1.0 to 3.0
0
Manganese (Mn), % 0 to 0.2
0.75 to 1.0
Nickel (Ni), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.050
0 to 0.035
Silicon (Si), % 0 to 0.050
0.15 to 0.35
Sulfur (S), % 0
0 to 0.040
Tin (Sn), % 0 to 1.5
0
Zinc (Zn), % 26.3 to 36
0