MakeItFrom.com
Menu (ESC)

CC750S Brass vs. C26800 Brass

Both CC750S brass and C26800 brass are copper alloys. They have a very high 96% of their average alloy composition in common. There are 24 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is CC750S brass and the bottom bar is C26800 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Poisson's Ratio 0.31
0.31
Shear Modulus, GPa 40
40
Tensile Strength: Ultimate (UTS), MPa 200
310 to 650

Thermal Properties

Latent Heat of Fusion, J/g 170
180
Maximum Temperature: Mechanical, °C 130
130
Melting Completion (Liquidus), °C 860
930
Melting Onset (Solidus), °C 810
900
Specific Heat Capacity, J/kg-K 380
390
Thermal Conductivity, W/m-K 110
120
Thermal Expansion, µm/m-K 20
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 24
27
Electrical Conductivity: Equal Weight (Specific), % IACS 26
30

Otherwise Unclassified Properties

Base Metal Price, % relative 25
24
Density, g/cm3 8.2
8.1
Embodied Carbon, kg CO2/kg material 2.8
2.7
Embodied Energy, MJ/kg 46
45
Embodied Water, L/kg 330
320

Common Calculations

Stiffness to Weight: Axial, points 7.1
7.2
Stiffness to Weight: Bending, points 19
19
Strength to Weight: Axial, points 6.8
11 to 22
Strength to Weight: Bending, points 9.3
13 to 21
Thermal Diffusivity, mm2/s 35
37
Thermal Shock Resistance, points 6.7
10 to 22

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0 to 0.1
0
Copper (Cu), % 62 to 67
64 to 68.5
Iron (Fe), % 0 to 0.8
0 to 0.050
Lead (Pb), % 1.0 to 3.0
0 to 0.15
Manganese (Mn), % 0 to 0.2
0
Nickel (Ni), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.050
0
Silicon (Si), % 0 to 0.050
0
Tin (Sn), % 0 to 1.5
0
Zinc (Zn), % 26.3 to 36
31 to 36
Residuals, % 0
0 to 0.3