MakeItFrom.com
Menu (ESC)

CC751S Brass vs. ASTM Grade LC1 Steel

CC751S brass belongs to the copper alloys classification, while ASTM grade LC1 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is CC751S brass and the bottom bar is ASTM grade LC1 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 130
160
Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 5.6
27
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 40
73
Tensile Strength: Ultimate (UTS), MPa 450
540
Tensile Strength: Yield (Proof), MPa 320
270

Thermal Properties

Latent Heat of Fusion, J/g 190
250
Maximum Temperature: Mechanical, °C 130
410
Melting Completion (Liquidus), °C 850
1470
Melting Onset (Solidus), °C 810
1420
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 110
50
Thermal Expansion, µm/m-K 20
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 28
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 24
2.4
Density, g/cm3 8.1
7.9
Embodied Carbon, kg CO2/kg material 2.8
1.5
Embodied Energy, MJ/kg 46
20
Embodied Water, L/kg 330
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 23
120
Resilience: Unit (Modulus of Resilience), kJ/m3 480
200
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 15
19
Strength to Weight: Bending, points 16
19
Thermal Diffusivity, mm2/s 35
13
Thermal Shock Resistance, points 15
16

Alloy Composition

Aluminum (Al), % 0 to 0.1
0
Antimony (Sb), % 0 to 0.5
0
Carbon (C), % 0
0 to 0.25
Copper (Cu), % 62.7 to 66
0
Iron (Fe), % 0.25 to 0.5
97.6 to 99.05
Lead (Pb), % 0.8 to 2.2
0
Manganese (Mn), % 0 to 0.15
0.5 to 0.8
Molybdenum (Mo), % 0
0.45 to 0.65
Nickel (Ni), % 0 to 0.8
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.65 to 1.1
0 to 0.6
Sulfur (S), % 0
0 to 0.045
Tin (Sn), % 0 to 0.8
0
Zinc (Zn), % 27.9 to 35.6
0