MakeItFrom.com
Menu (ESC)

CC751S Brass vs. EN 1.5510 Steel

CC751S brass belongs to the copper alloys classification, while EN 1.5510 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is CC751S brass and the bottom bar is EN 1.5510 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 130
130 to 190
Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 5.6
11 to 21
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 40
73
Tensile Strength: Ultimate (UTS), MPa 450
450 to 1600
Tensile Strength: Yield (Proof), MPa 320
310 to 520

Thermal Properties

Latent Heat of Fusion, J/g 190
250
Maximum Temperature: Mechanical, °C 130
400
Melting Completion (Liquidus), °C 850
1460
Melting Onset (Solidus), °C 810
1420
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 110
51
Thermal Expansion, µm/m-K 20
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 28
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 24
1.9
Density, g/cm3 8.1
7.8
Embodied Carbon, kg CO2/kg material 2.8
1.4
Embodied Energy, MJ/kg 46
19
Embodied Water, L/kg 330
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 23
46 to 260
Resilience: Unit (Modulus of Resilience), kJ/m3 480
260 to 710
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 15
16 to 57
Strength to Weight: Bending, points 16
17 to 39
Thermal Diffusivity, mm2/s 35
14
Thermal Shock Resistance, points 15
13 to 47

Alloy Composition

Aluminum (Al), % 0 to 0.1
0
Antimony (Sb), % 0 to 0.5
0
Boron (B), % 0
0.00080 to 0.0050
Carbon (C), % 0
0.25 to 0.3
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 62.7 to 66
0 to 0.25
Iron (Fe), % 0.25 to 0.5
97.9 to 99.149
Lead (Pb), % 0.8 to 2.2
0
Manganese (Mn), % 0 to 0.15
0.6 to 0.9
Nickel (Ni), % 0 to 0.8
0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0.65 to 1.1
0 to 0.3
Sulfur (S), % 0
0 to 0.025
Tin (Sn), % 0 to 0.8
0
Zinc (Zn), % 27.9 to 35.6
0