MakeItFrom.com
Menu (ESC)

CC751S Brass vs. Grade 37 Titanium

CC751S brass belongs to the copper alloys classification, while grade 37 titanium belongs to the titanium alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is CC751S brass and the bottom bar is grade 37 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 5.6
22
Poisson's Ratio 0.31
0.32
Shear Modulus, GPa 40
40
Tensile Strength: Ultimate (UTS), MPa 450
390
Tensile Strength: Yield (Proof), MPa 320
250

Thermal Properties

Latent Heat of Fusion, J/g 190
420
Maximum Temperature: Mechanical, °C 130
310
Melting Completion (Liquidus), °C 850
1650
Melting Onset (Solidus), °C 810
1600
Specific Heat Capacity, J/kg-K 390
550
Thermal Conductivity, W/m-K 110
21
Thermal Expansion, µm/m-K 20
8.9

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
3.4
Electrical Conductivity: Equal Weight (Specific), % IACS 28
6.8

Otherwise Unclassified Properties

Base Metal Price, % relative 24
36
Density, g/cm3 8.1
4.5
Embodied Carbon, kg CO2/kg material 2.8
31
Embodied Energy, MJ/kg 46
500
Embodied Water, L/kg 330
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 23
76
Resilience: Unit (Modulus of Resilience), kJ/m3 480
280
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 19
35
Strength to Weight: Axial, points 15
24
Strength to Weight: Bending, points 16
26
Thermal Diffusivity, mm2/s 35
8.4
Thermal Shock Resistance, points 15
29

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0 to 0.1
1.0 to 2.0
Antimony (Sb), % 0 to 0.5
0
Carbon (C), % 0
0 to 0.080
Copper (Cu), % 62.7 to 66
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0.25 to 0.5
0 to 0.3
Lead (Pb), % 0.8 to 2.2
0
Manganese (Mn), % 0 to 0.15
0
Nickel (Ni), % 0 to 0.8
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.25
Silicon (Si), % 0.65 to 1.1
0
Tin (Sn), % 0 to 0.8
0
Titanium (Ti), % 0
96.9 to 99
Zinc (Zn), % 27.9 to 35.6
0
Residuals, % 0
0 to 0.4