MakeItFrom.com
Menu (ESC)

CC751S Brass vs. C61900 Bronze

Both CC751S brass and C61900 bronze are copper alloys. They have 65% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is CC751S brass and the bottom bar is C61900 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 5.6
21 to 32
Poisson's Ratio 0.31
0.34
Shear Modulus, GPa 40
43
Tensile Strength: Ultimate (UTS), MPa 450
570 to 650
Tensile Strength: Yield (Proof), MPa 320
230 to 310

Thermal Properties

Latent Heat of Fusion, J/g 190
230
Maximum Temperature: Mechanical, °C 130
220
Melting Completion (Liquidus), °C 850
1050
Melting Onset (Solidus), °C 810
1040
Specific Heat Capacity, J/kg-K 390
440
Thermal Conductivity, W/m-K 110
79
Thermal Expansion, µm/m-K 20
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
11
Electrical Conductivity: Equal Weight (Specific), % IACS 28
11

Otherwise Unclassified Properties

Base Metal Price, % relative 24
28
Density, g/cm3 8.1
8.3
Embodied Carbon, kg CO2/kg material 2.8
3.1
Embodied Energy, MJ/kg 46
51
Embodied Water, L/kg 330
380

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 23
110 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 480
230 to 430
Stiffness to Weight: Axial, points 7.2
7.6
Stiffness to Weight: Bending, points 19
19
Strength to Weight: Axial, points 15
19 to 22
Strength to Weight: Bending, points 16
18 to 20
Thermal Diffusivity, mm2/s 35
22
Thermal Shock Resistance, points 15
20 to 23

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0 to 0.1
8.5 to 10
Antimony (Sb), % 0 to 0.5
0
Copper (Cu), % 62.7 to 66
83.6 to 88.5
Iron (Fe), % 0.25 to 0.5
3.0 to 4.5
Lead (Pb), % 0.8 to 2.2
0 to 0.020
Manganese (Mn), % 0 to 0.15
0
Nickel (Ni), % 0 to 0.8
0
Silicon (Si), % 0.65 to 1.1
0
Tin (Sn), % 0 to 0.8
0 to 0.6
Zinc (Zn), % 27.9 to 35.6
0 to 0.8
Residuals, % 0
0 to 0.5