MakeItFrom.com
Menu (ESC)

CC751S Brass vs. C70260 Copper

Both CC751S brass and C70260 copper are copper alloys. They have 65% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is CC751S brass and the bottom bar is C70260 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 5.6
9.5 to 19
Poisson's Ratio 0.31
0.34
Shear Modulus, GPa 40
44
Tensile Strength: Ultimate (UTS), MPa 450
520 to 760
Tensile Strength: Yield (Proof), MPa 320
410 to 650

Thermal Properties

Latent Heat of Fusion, J/g 190
220
Maximum Temperature: Mechanical, °C 130
200
Melting Completion (Liquidus), °C 850
1060
Melting Onset (Solidus), °C 810
1040
Specific Heat Capacity, J/kg-K 390
390
Thermal Conductivity, W/m-K 110
160
Thermal Expansion, µm/m-K 20
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
40 to 50
Electrical Conductivity: Equal Weight (Specific), % IACS 28
40 to 51

Otherwise Unclassified Properties

Base Metal Price, % relative 24
31
Density, g/cm3 8.1
8.9
Embodied Carbon, kg CO2/kg material 2.8
2.7
Embodied Energy, MJ/kg 46
43
Embodied Water, L/kg 330
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 23
46 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 480
710 to 1810
Stiffness to Weight: Axial, points 7.2
7.3
Stiffness to Weight: Bending, points 19
18
Strength to Weight: Axial, points 15
16 to 24
Strength to Weight: Bending, points 16
16 to 21
Thermal Diffusivity, mm2/s 35
45
Thermal Shock Resistance, points 15
18 to 27

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0 to 0.1
0
Antimony (Sb), % 0 to 0.5
0
Copper (Cu), % 62.7 to 66
95.8 to 98.8
Iron (Fe), % 0.25 to 0.5
0
Lead (Pb), % 0.8 to 2.2
0
Manganese (Mn), % 0 to 0.15
0
Nickel (Ni), % 0 to 0.8
1.0 to 3.0
Phosphorus (P), % 0
0 to 0.010
Silicon (Si), % 0.65 to 1.1
0.2 to 0.7
Tin (Sn), % 0 to 0.8
0
Zinc (Zn), % 27.9 to 35.6
0
Residuals, % 0
0 to 0.5