MakeItFrom.com
Menu (ESC)

CC751S Brass vs. C82800 Copper

Both CC751S brass and C82800 copper are copper alloys. They have 65% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is CC751S brass and the bottom bar is C82800 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 5.6
1.0 to 20
Poisson's Ratio 0.31
0.33
Shear Modulus, GPa 40
46
Tensile Strength: Ultimate (UTS), MPa 450
670 to 1140
Tensile Strength: Yield (Proof), MPa 320
380 to 1000

Thermal Properties

Latent Heat of Fusion, J/g 190
240
Maximum Temperature: Mechanical, °C 130
310
Melting Completion (Liquidus), °C 850
930
Melting Onset (Solidus), °C 810
890
Specific Heat Capacity, J/kg-K 390
390
Thermal Conductivity, W/m-K 110
120
Thermal Expansion, µm/m-K 20
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
18
Electrical Conductivity: Equal Weight (Specific), % IACS 28
19

Otherwise Unclassified Properties

Density, g/cm3 8.1
8.7
Embodied Carbon, kg CO2/kg material 2.8
12
Embodied Energy, MJ/kg 46
190
Embodied Water, L/kg 330
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 23
11 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 480
590 to 4080
Stiffness to Weight: Axial, points 7.2
7.8
Stiffness to Weight: Bending, points 19
19
Strength to Weight: Axial, points 15
21 to 36
Strength to Weight: Bending, points 16
20 to 28
Thermal Diffusivity, mm2/s 35
36
Thermal Shock Resistance, points 15
23 to 39

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0 to 0.1
0 to 0.15
Antimony (Sb), % 0 to 0.5
0
Beryllium (Be), % 0
2.5 to 2.9
Chromium (Cr), % 0
0 to 0.1
Cobalt (Co), % 0
0.15 to 0.7
Copper (Cu), % 62.7 to 66
94.6 to 97.2
Iron (Fe), % 0.25 to 0.5
0 to 0.25
Lead (Pb), % 0.8 to 2.2
0 to 0.020
Manganese (Mn), % 0 to 0.15
0
Nickel (Ni), % 0 to 0.8
0 to 0.2
Silicon (Si), % 0.65 to 1.1
0.2 to 0.35
Tin (Sn), % 0 to 0.8
0 to 0.1
Titanium (Ti), % 0
0 to 0.12
Zinc (Zn), % 27.9 to 35.6
0 to 0.1
Residuals, % 0
0 to 0.5