MakeItFrom.com
Menu (ESC)

CC752S Brass vs. C71580 Copper-nickel

Both CC752S brass and C71580 copper-nickel are copper alloys. They have 63% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is CC752S brass and the bottom bar is C71580 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 100
75
Elastic (Young's, Tensile) Modulus, GPa 100
140
Elongation at Break, % 8.4
40
Poisson's Ratio 0.31
0.33
Shear Modulus, GPa 40
51
Tensile Strength: Ultimate (UTS), MPa 350
330
Tensile Strength: Yield (Proof), MPa 190
110

Thermal Properties

Latent Heat of Fusion, J/g 170
230
Maximum Temperature: Mechanical, °C 130
260
Melting Completion (Liquidus), °C 840
1180
Melting Onset (Solidus), °C 800
1120
Specific Heat Capacity, J/kg-K 380
400
Thermal Conductivity, W/m-K 110
39
Thermal Expansion, µm/m-K 21
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
4.7
Electrical Conductivity: Equal Weight (Specific), % IACS 28
4.7

Otherwise Unclassified Properties

Base Metal Price, % relative 24
41
Density, g/cm3 8.1
8.9
Embodied Carbon, kg CO2/kg material 2.7
5.1
Embodied Energy, MJ/kg 46
74
Embodied Water, L/kg 330
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 25
100
Resilience: Unit (Modulus of Resilience), kJ/m3 180
47
Stiffness to Weight: Axial, points 7.1
8.5
Stiffness to Weight: Bending, points 19
19
Strength to Weight: Axial, points 12
10
Strength to Weight: Bending, points 13
12
Thermal Diffusivity, mm2/s 35
11
Thermal Shock Resistance, points 12
11

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0.3 to 0.7
0
Antimony (Sb), % 0 to 0.14
0
Arsenic (As), % 0.040 to 0.14
0
Carbon (C), % 0
0 to 0.070
Copper (Cu), % 61.5 to 64.5
65.5 to 71
Iron (Fe), % 0 to 0.3
0 to 0.5
Lead (Pb), % 1.5 to 2.2
0 to 0.050
Manganese (Mn), % 0 to 0.1
0 to 0.3
Nickel (Ni), % 0 to 0.2
29 to 33
Silicon (Si), % 0 to 0.020
0
Tin (Sn), % 0 to 0.3
0
Zinc (Zn), % 31.5 to 36.7
0 to 0.050
Residuals, % 0
0 to 0.5