MakeItFrom.com
Menu (ESC)

CC752S Brass vs. C84500 Brass

Both CC752S brass and C84500 brass are copper alloys. Both are furnished in the as-fabricated (no temper or treatment) condition. They have 77% of their average alloy composition in common.

For each property being compared, the top bar is CC752S brass and the bottom bar is C84500 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 100
55
Elastic (Young's, Tensile) Modulus, GPa 100
100
Elongation at Break, % 8.4
28
Poisson's Ratio 0.31
0.34
Shear Modulus, GPa 40
39
Tensile Strength: Ultimate (UTS), MPa 350
240
Tensile Strength: Yield (Proof), MPa 190
97

Thermal Properties

Latent Heat of Fusion, J/g 170
180
Maximum Temperature: Mechanical, °C 130
150
Melting Completion (Liquidus), °C 840
980
Melting Onset (Solidus), °C 800
840
Specific Heat Capacity, J/kg-K 380
360
Thermal Conductivity, W/m-K 110
72
Thermal Expansion, µm/m-K 21
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
16
Electrical Conductivity: Equal Weight (Specific), % IACS 28
17

Otherwise Unclassified Properties

Base Metal Price, % relative 24
28
Density, g/cm3 8.1
8.7
Embodied Carbon, kg CO2/kg material 2.7
2.9
Embodied Energy, MJ/kg 46
47
Embodied Water, L/kg 330
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 25
54
Resilience: Unit (Modulus of Resilience), kJ/m3 180
45
Stiffness to Weight: Axial, points 7.1
6.6
Stiffness to Weight: Bending, points 19
18
Strength to Weight: Axial, points 12
7.7
Strength to Weight: Bending, points 13
9.8
Thermal Diffusivity, mm2/s 35
23
Thermal Shock Resistance, points 12
8.6

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0.3 to 0.7
0 to 0.0050
Antimony (Sb), % 0 to 0.14
0 to 0.25
Arsenic (As), % 0.040 to 0.14
0
Copper (Cu), % 61.5 to 64.5
77 to 79
Iron (Fe), % 0 to 0.3
0 to 0.4
Lead (Pb), % 1.5 to 2.2
6.0 to 7.5
Manganese (Mn), % 0 to 0.1
0
Nickel (Ni), % 0 to 0.2
0 to 1.0
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.020
0 to 0.0050
Sulfur (S), % 0
0 to 0.080
Tin (Sn), % 0 to 0.3
2.0 to 4.0
Zinc (Zn), % 31.5 to 36.7
10 to 14
Residuals, % 0
0 to 0.7