MakeItFrom.com
Menu (ESC)

CC752S Brass vs. C93600 Bronze

Both CC752S brass and C93600 bronze are copper alloys. Both are furnished in the as-fabricated (no temper or treatment) condition. They have 66% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is CC752S brass and the bottom bar is C93600 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
99
Elongation at Break, % 8.4
14
Poisson's Ratio 0.31
0.35
Shear Modulus, GPa 40
36
Tensile Strength: Ultimate (UTS), MPa 350
260
Tensile Strength: Yield (Proof), MPa 190
140

Thermal Properties

Latent Heat of Fusion, J/g 170
170
Maximum Temperature: Mechanical, °C 130
150
Melting Completion (Liquidus), °C 840
940
Melting Onset (Solidus), °C 800
840
Specific Heat Capacity, J/kg-K 380
350
Thermal Conductivity, W/m-K 110
49
Thermal Expansion, µm/m-K 21
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
11
Electrical Conductivity: Equal Weight (Specific), % IACS 28
11

Otherwise Unclassified Properties

Base Metal Price, % relative 24
31
Density, g/cm3 8.1
9.0
Embodied Carbon, kg CO2/kg material 2.7
3.2
Embodied Energy, MJ/kg 46
51
Embodied Water, L/kg 330
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 25
31
Resilience: Unit (Modulus of Resilience), kJ/m3 180
98
Stiffness to Weight: Axial, points 7.1
6.1
Stiffness to Weight: Bending, points 19
17
Strength to Weight: Axial, points 12
7.9
Strength to Weight: Bending, points 13
9.9
Thermal Diffusivity, mm2/s 35
16
Thermal Shock Resistance, points 12
9.8

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0.3 to 0.7
0 to 0.0050
Antimony (Sb), % 0 to 0.14
0 to 0.55
Arsenic (As), % 0.040 to 0.14
0
Copper (Cu), % 61.5 to 64.5
79 to 83
Iron (Fe), % 0 to 0.3
0 to 0.2
Lead (Pb), % 1.5 to 2.2
11 to 13
Manganese (Mn), % 0 to 0.1
0
Nickel (Ni), % 0 to 0.2
0 to 1.0
Phosphorus (P), % 0
0 to 1.5
Silicon (Si), % 0 to 0.020
0 to 0.0050
Sulfur (S), % 0
0 to 0.080
Tin (Sn), % 0 to 0.3
6.0 to 8.0
Zinc (Zn), % 31.5 to 36.7
0 to 1.0
Residuals, % 0
0 to 0.7