MakeItFrom.com
Menu (ESC)

CC752S Brass vs. S41041 Stainless Steel

CC752S brass belongs to the copper alloys classification, while S41041 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is CC752S brass and the bottom bar is S41041 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 100
240
Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 8.4
17
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 40
76
Tensile Strength: Ultimate (UTS), MPa 350
910
Tensile Strength: Yield (Proof), MPa 190
580

Thermal Properties

Latent Heat of Fusion, J/g 170
270
Maximum Temperature: Mechanical, °C 130
740
Melting Completion (Liquidus), °C 840
1450
Melting Onset (Solidus), °C 800
1410
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 110
29
Thermal Expansion, µm/m-K 21
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 28
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 24
8.5
Density, g/cm3 8.1
7.8
Embodied Carbon, kg CO2/kg material 2.7
2.2
Embodied Energy, MJ/kg 46
31
Embodied Water, L/kg 330
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 25
140
Resilience: Unit (Modulus of Resilience), kJ/m3 180
860
Stiffness to Weight: Axial, points 7.1
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 12
32
Strength to Weight: Bending, points 13
27
Thermal Diffusivity, mm2/s 35
7.8
Thermal Shock Resistance, points 12
33

Alloy Composition

Aluminum (Al), % 0.3 to 0.7
0 to 0.050
Antimony (Sb), % 0 to 0.14
0
Arsenic (As), % 0.040 to 0.14
0
Carbon (C), % 0
0.13 to 0.18
Chromium (Cr), % 0
11.5 to 13
Copper (Cu), % 61.5 to 64.5
0
Iron (Fe), % 0 to 0.3
84.5 to 87.8
Lead (Pb), % 1.5 to 2.2
0
Manganese (Mn), % 0 to 0.1
0.4 to 0.6
Molybdenum (Mo), % 0
0 to 0.2
Nickel (Ni), % 0 to 0.2
0 to 0.5
Niobium (Nb), % 0
0.15 to 0.45
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.020
0 to 0.5
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.3
0
Zinc (Zn), % 31.5 to 36.7
0