MakeItFrom.com
Menu (ESC)

CC753S Brass vs. AISI 418 Stainless Steel

CC753S brass belongs to the copper alloys classification, while AISI 418 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is CC753S brass and the bottom bar is AISI 418 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 100
330
Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 17
17
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 40
77
Tensile Strength: Ultimate (UTS), MPa 340
1100
Tensile Strength: Yield (Proof), MPa 170
850

Thermal Properties

Latent Heat of Fusion, J/g 170
270
Maximum Temperature: Mechanical, °C 120
770
Melting Completion (Liquidus), °C 820
1500
Melting Onset (Solidus), °C 780
1460
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 99
25
Thermal Expansion, µm/m-K 21
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
2.8
Electrical Conductivity: Equal Weight (Specific), % IACS 29
3.1

Otherwise Unclassified Properties

Base Metal Price, % relative 23
15
Density, g/cm3 8.1
8.0
Embodied Carbon, kg CO2/kg material 2.8
2.9
Embodied Energy, MJ/kg 47
41
Embodied Water, L/kg 330
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 47
170
Resilience: Unit (Modulus of Resilience), kJ/m3 140
1830
Stiffness to Weight: Axial, points 7.1
14
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 12
38
Strength to Weight: Bending, points 13
29
Thermal Diffusivity, mm2/s 32
6.7
Thermal Shock Resistance, points 11
40

Alloy Composition

Aluminum (Al), % 0.4 to 0.8
0
Antimony (Sb), % 0 to 0.050
0
Carbon (C), % 0
0.15 to 0.2
Chromium (Cr), % 0
12 to 14
Copper (Cu), % 56.8 to 60.5
0
Iron (Fe), % 0.5 to 0.8
78.5 to 83.6
Lead (Pb), % 1.8 to 2.5
0
Manganese (Mn), % 0 to 0.2
0 to 0.5
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0.5 to 1.2
1.8 to 2.2
Phosphorus (P), % 0 to 0.020
0 to 0.040
Silicon (Si), % 0 to 0.050
0 to 0.5
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.8
0
Tungsten (W), % 0
2.5 to 3.5
Zinc (Zn), % 33.1 to 40
0