MakeItFrom.com
Menu (ESC)

CC753S Brass vs. EN 1.6579 Steel

CC753S brass belongs to the copper alloys classification, while EN 1.6579 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is CC753S brass and the bottom bar is EN 1.6579 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 100
260 to 290
Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 17
11 to 14
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 40
73
Tensile Strength: Ultimate (UTS), MPa 340
850 to 980
Tensile Strength: Yield (Proof), MPa 170
600 to 910

Thermal Properties

Latent Heat of Fusion, J/g 170
250
Maximum Temperature: Mechanical, °C 120
440
Melting Completion (Liquidus), °C 820
1460
Melting Onset (Solidus), °C 780
1410
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 99
39
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
7.7
Electrical Conductivity: Equal Weight (Specific), % IACS 29
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 23
3.7
Density, g/cm3 8.1
7.8
Embodied Carbon, kg CO2/kg material 2.8
1.7
Embodied Energy, MJ/kg 47
22
Embodied Water, L/kg 330
56

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 47
100 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 140
950 to 2210
Stiffness to Weight: Axial, points 7.1
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 12
30 to 35
Strength to Weight: Bending, points 13
25 to 28
Thermal Diffusivity, mm2/s 32
11
Thermal Shock Resistance, points 11
25 to 29

Alloy Composition

Aluminum (Al), % 0.4 to 0.8
0
Antimony (Sb), % 0 to 0.050
0
Carbon (C), % 0
0.32 to 0.38
Chromium (Cr), % 0
1.4 to 1.7
Copper (Cu), % 56.8 to 60.5
0
Iron (Fe), % 0.5 to 0.8
94.2 to 96.1
Lead (Pb), % 1.8 to 2.5
0
Manganese (Mn), % 0 to 0.2
0.6 to 1.0
Molybdenum (Mo), % 0
0.15 to 0.35
Nickel (Ni), % 0.5 to 1.2
1.4 to 1.7
Phosphorus (P), % 0 to 0.020
0 to 0.025
Silicon (Si), % 0 to 0.050
0 to 0.6
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.8
0
Zinc (Zn), % 33.1 to 40
0