MakeItFrom.com
Menu (ESC)

CC753S Brass vs. Low-oxygen Zirconium

CC753S brass belongs to the copper alloys classification, while low-oxygen zirconium belongs to the otherwise unclassified metals. There are 20 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is CC753S brass and the bottom bar is low-oxygen zirconium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
98
Elongation at Break, % 17
23
Poisson's Ratio 0.31
0.34
Shear Modulus, GPa 40
37
Tensile Strength: Ultimate (UTS), MPa 340
330
Tensile Strength: Yield (Proof), MPa 170
270

Thermal Properties

Latent Heat of Fusion, J/g 170
250
Specific Heat Capacity, J/kg-K 390
270
Thermal Conductivity, W/m-K 99
22
Thermal Expansion, µm/m-K 21
5.7

Otherwise Unclassified Properties

Density, g/cm3 8.1
6.7
Embodied Water, L/kg 330
450

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 47
70
Resilience: Unit (Modulus of Resilience), kJ/m3 140
370
Stiffness to Weight: Axial, points 7.1
8.1
Stiffness to Weight: Bending, points 19
23
Strength to Weight: Axial, points 12
14
Strength to Weight: Bending, points 13
16
Thermal Diffusivity, mm2/s 32
12
Thermal Shock Resistance, points 11
42

Alloy Composition

Aluminum (Al), % 0.4 to 0.8
0
Antimony (Sb), % 0 to 0.050
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
0 to 0.2
Copper (Cu), % 56.8 to 60.5
0
Hafnium (Hf), % 0
0 to 4.5
Hydrogen (H), % 0
0 to 0.0050
Iron (Fe), % 0.5 to 0.8
0 to 0.2
Lead (Pb), % 1.8 to 2.5
0
Manganese (Mn), % 0 to 0.2
0
Nickel (Ni), % 0.5 to 1.2
0
Nitrogen (N), % 0
0 to 0.025
Oxygen (O), % 0
0 to 0.1
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.050
0
Tin (Sn), % 0 to 0.8
0
Zinc (Zn), % 33.1 to 40
0
Zirconium (Zr), % 0
94.7 to 100