MakeItFrom.com
Menu (ESC)

CC753S Brass vs. C82500 Copper

Both CC753S brass and C82500 copper are copper alloys. They have 59% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is CC753S brass and the bottom bar is C82500 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
120
Elongation at Break, % 17
1.0 to 20
Poisson's Ratio 0.31
0.33
Shear Modulus, GPa 40
45
Tensile Strength: Ultimate (UTS), MPa 340
550 to 1100
Tensile Strength: Yield (Proof), MPa 170
310 to 980

Thermal Properties

Latent Heat of Fusion, J/g 170
240
Maximum Temperature: Mechanical, °C 120
280
Melting Completion (Liquidus), °C 820
980
Melting Onset (Solidus), °C 780
860
Specific Heat Capacity, J/kg-K 390
390
Thermal Conductivity, W/m-K 99
130
Thermal Expansion, µm/m-K 21
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
20
Electrical Conductivity: Equal Weight (Specific), % IACS 29
21

Otherwise Unclassified Properties

Density, g/cm3 8.1
8.8
Embodied Carbon, kg CO2/kg material 2.8
10
Embodied Energy, MJ/kg 47
160
Embodied Water, L/kg 330
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 47
11 to 94
Resilience: Unit (Modulus of Resilience), kJ/m3 140
400 to 4000
Stiffness to Weight: Axial, points 7.1
7.7
Stiffness to Weight: Bending, points 19
19
Strength to Weight: Axial, points 12
18 to 35
Strength to Weight: Bending, points 13
17 to 27
Thermal Diffusivity, mm2/s 32
38
Thermal Shock Resistance, points 11
19 to 38

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0.4 to 0.8
0 to 0.15
Antimony (Sb), % 0 to 0.050
0
Beryllium (Be), % 0
1.9 to 2.3
Chromium (Cr), % 0
0 to 0.1
Cobalt (Co), % 0
0.15 to 0.7
Copper (Cu), % 56.8 to 60.5
95.3 to 97.8
Iron (Fe), % 0.5 to 0.8
0 to 0.25
Lead (Pb), % 1.8 to 2.5
0 to 0.020
Manganese (Mn), % 0 to 0.2
0
Nickel (Ni), % 0.5 to 1.2
0 to 0.2
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.050
0.2 to 0.35
Tin (Sn), % 0 to 0.8
0 to 0.1
Titanium (Ti), % 0
0 to 0.12
Zinc (Zn), % 33.1 to 40
0 to 0.1
Residuals, % 0
0 to 0.5