MakeItFrom.com
Menu (ESC)

CC753S Brass vs. C92700 Bronze

Both CC753S brass and C92700 bronze are copper alloys. Both are furnished in the as-fabricated (no temper or treatment) condition. They have 62% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is CC753S brass and the bottom bar is C92700 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
110
Elongation at Break, % 17
9.1
Poisson's Ratio 0.31
0.34
Shear Modulus, GPa 40
40
Tensile Strength: Ultimate (UTS), MPa 340
290
Tensile Strength: Yield (Proof), MPa 170
150

Thermal Properties

Latent Heat of Fusion, J/g 170
190
Maximum Temperature: Mechanical, °C 120
170
Melting Completion (Liquidus), °C 820
980
Melting Onset (Solidus), °C 780
840
Specific Heat Capacity, J/kg-K 390
370
Thermal Conductivity, W/m-K 99
47
Thermal Expansion, µm/m-K 21
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
11
Electrical Conductivity: Equal Weight (Specific), % IACS 29
11

Otherwise Unclassified Properties

Base Metal Price, % relative 23
35
Density, g/cm3 8.1
8.7
Embodied Carbon, kg CO2/kg material 2.8
3.6
Embodied Energy, MJ/kg 47
58
Embodied Water, L/kg 330
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 47
22
Resilience: Unit (Modulus of Resilience), kJ/m3 140
110
Stiffness to Weight: Axial, points 7.1
6.8
Stiffness to Weight: Bending, points 19
18
Strength to Weight: Axial, points 12
9.1
Strength to Weight: Bending, points 13
11
Thermal Diffusivity, mm2/s 32
15
Thermal Shock Resistance, points 11
11

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0.4 to 0.8
0 to 0.0050
Antimony (Sb), % 0 to 0.050
0 to 0.25
Copper (Cu), % 56.8 to 60.5
86 to 89
Iron (Fe), % 0.5 to 0.8
0 to 0.2
Lead (Pb), % 1.8 to 2.5
1.0 to 2.5
Manganese (Mn), % 0 to 0.2
0
Nickel (Ni), % 0.5 to 1.2
0 to 1.0
Phosphorus (P), % 0 to 0.020
0 to 1.5
Silicon (Si), % 0 to 0.050
0 to 0.0050
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0 to 0.8
9.0 to 11
Zinc (Zn), % 33.1 to 40
0 to 0.7
Residuals, % 0
0 to 0.7