MakeItFrom.com
Menu (ESC)

CC754S Brass vs. EN 1.4125 Stainless Steel

CC754S brass belongs to the copper alloys classification, while EN 1.4125 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is CC754S brass and the bottom bar is EN 1.4125 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 90
250
Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 11
19
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 40
77
Tensile Strength: Ultimate (UTS), MPa 320
800
Tensile Strength: Yield (Proof), MPa 160
470

Thermal Properties

Latent Heat of Fusion, J/g 170
280
Maximum Temperature: Mechanical, °C 120
870
Melting Completion (Liquidus), °C 830
1430
Melting Onset (Solidus), °C 780
1390
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 95
15
Thermal Expansion, µm/m-K 21
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 30
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 23
9.0
Density, g/cm3 8.1
7.7
Embodied Carbon, kg CO2/kg material 2.8
2.3
Embodied Energy, MJ/kg 47
32
Embodied Water, L/kg 330
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 29
130
Resilience: Unit (Modulus of Resilience), kJ/m3 130
570
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 11
29
Strength to Weight: Bending, points 13
25
Thermal Diffusivity, mm2/s 31
4.1
Thermal Shock Resistance, points 10
29

Alloy Composition

Aluminum (Al), % 0 to 0.8
0
Carbon (C), % 0
1.0 to 1.2
Chromium (Cr), % 0
16 to 18
Copper (Cu), % 57 to 63
0
Iron (Fe), % 0 to 0.7
78 to 82.7
Lead (Pb), % 0.5 to 2.5
0
Manganese (Mn), % 0 to 0.5
0 to 1.0
Molybdenum (Mo), % 0
0.4 to 0.8
Nickel (Ni), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.020
0 to 0.040
Silicon (Si), % 0 to 0.3
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 1.0
0
Zinc (Zn), % 30.2 to 42.5
0