MakeItFrom.com
Menu (ESC)

CC754S Brass vs. C49300 Brass

Both CC754S brass and C49300 brass are copper alloys. They have a very high 97% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is CC754S brass and the bottom bar is C49300 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
100
Elongation at Break, % 11
4.5 to 20
Poisson's Ratio 0.31
0.31
Shear Modulus, GPa 40
40
Tensile Strength: Ultimate (UTS), MPa 320
430 to 520
Tensile Strength: Yield (Proof), MPa 160
210 to 410

Thermal Properties

Latent Heat of Fusion, J/g 170
170
Maximum Temperature: Mechanical, °C 120
120
Melting Completion (Liquidus), °C 830
880
Melting Onset (Solidus), °C 780
840
Specific Heat Capacity, J/kg-K 390
380
Thermal Conductivity, W/m-K 95
88
Thermal Expansion, µm/m-K 21
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
15
Electrical Conductivity: Equal Weight (Specific), % IACS 30
17

Otherwise Unclassified Properties

Base Metal Price, % relative 23
26
Density, g/cm3 8.1
8.0
Embodied Carbon, kg CO2/kg material 2.8
3.0
Embodied Energy, MJ/kg 47
50
Embodied Water, L/kg 330
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 29
21 to 71
Resilience: Unit (Modulus of Resilience), kJ/m3 130
220 to 800
Stiffness to Weight: Axial, points 7.2
7.2
Stiffness to Weight: Bending, points 19
19
Strength to Weight: Axial, points 11
15 to 18
Strength to Weight: Bending, points 13
16 to 18
Thermal Diffusivity, mm2/s 31
29
Thermal Shock Resistance, points 10
14 to 18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0 to 0.8
0 to 0.5
Antimony (Sb), % 0
0 to 0.5
Bismuth (Bi), % 0
0.5 to 2.0
Copper (Cu), % 57 to 63
58 to 62
Iron (Fe), % 0 to 0.7
0 to 0.1
Lead (Pb), % 0.5 to 2.5
0 to 0.010
Manganese (Mn), % 0 to 0.5
0 to 0.030
Nickel (Ni), % 0 to 1.0
0 to 1.5
Phosphorus (P), % 0 to 0.020
0 to 0.2
Selenium (Se), % 0
0 to 0.2
Silicon (Si), % 0 to 0.3
0 to 0.1
Tin (Sn), % 0 to 1.0
1.0 to 1.8
Zinc (Zn), % 30.2 to 42.5
30.6 to 40.5
Residuals, % 0
0 to 0.5