MakeItFrom.com
Menu (ESC)

CC755S Brass vs. N07716 Nickel

CC755S brass belongs to the copper alloys classification, while N07716 nickel belongs to the nickel alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is CC755S brass and the bottom bar is N07716 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 9.5
34
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 40
78
Tensile Strength: Ultimate (UTS), MPa 390
860
Tensile Strength: Yield (Proof), MPa 250
350

Thermal Properties

Latent Heat of Fusion, J/g 170
320
Maximum Temperature: Mechanical, °C 120
980
Melting Completion (Liquidus), °C 820
1480
Melting Onset (Solidus), °C 780
1430
Specific Heat Capacity, J/kg-K 390
440
Thermal Conductivity, W/m-K 120
11
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 30
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 23
75
Density, g/cm3 8.1
8.5
Embodied Carbon, kg CO2/kg material 2.7
13
Embodied Energy, MJ/kg 46
190
Embodied Water, L/kg 330
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 33
240
Resilience: Unit (Modulus of Resilience), kJ/m3 290
300
Stiffness to Weight: Axial, points 7.1
13
Stiffness to Weight: Bending, points 19
23
Strength to Weight: Axial, points 14
28
Strength to Weight: Bending, points 15
24
Thermal Diffusivity, mm2/s 38
2.8
Thermal Shock Resistance, points 13
24

Alloy Composition

Aluminum (Al), % 0.4 to 0.7
0 to 0.35
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
19 to 22
Copper (Cu), % 59.5 to 61
0
Iron (Fe), % 0.050 to 0.2
0 to 11.3
Lead (Pb), % 1.2 to 1.7
0
Manganese (Mn), % 0 to 0.050
0 to 0.2
Molybdenum (Mo), % 0
7.0 to 9.5
Nickel (Ni), % 0 to 0.2
59 to 63
Niobium (Nb), % 0
2.8 to 4.0
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0 to 0.050
0 to 0.2
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 0 to 0.3
0
Titanium (Ti), % 0
1.0 to 1.6
Zinc (Zn), % 35.8 to 38.9
0