MakeItFrom.com
Menu (ESC)

CC755S Brass vs. N08020 Stainless Steel

CC755S brass belongs to the copper alloys classification, while N08020 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is CC755S brass and the bottom bar is N08020 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 9.5
15 to 34
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 40
77
Tensile Strength: Ultimate (UTS), MPa 390
610 to 620
Tensile Strength: Yield (Proof), MPa 250
270 to 420

Thermal Properties

Latent Heat of Fusion, J/g 170
300
Maximum Temperature: Mechanical, °C 120
1100
Melting Completion (Liquidus), °C 820
1410
Melting Onset (Solidus), °C 780
1360
Specific Heat Capacity, J/kg-K 390
460
Thermal Conductivity, W/m-K 120
12
Thermal Expansion, µm/m-K 21
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
1.6
Electrical Conductivity: Equal Weight (Specific), % IACS 30
1.8

Otherwise Unclassified Properties

Base Metal Price, % relative 23
38
Density, g/cm3 8.1
8.2
Embodied Carbon, kg CO2/kg material 2.7
6.6
Embodied Energy, MJ/kg 46
92
Embodied Water, L/kg 330
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 33
83 to 170
Resilience: Unit (Modulus of Resilience), kJ/m3 290
180 to 440
Stiffness to Weight: Axial, points 7.1
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 14
21
Strength to Weight: Bending, points 15
20
Thermal Diffusivity, mm2/s 38
3.2
Thermal Shock Resistance, points 13
15

Alloy Composition

Aluminum (Al), % 0.4 to 0.7
0
Carbon (C), % 0
0 to 0.070
Chromium (Cr), % 0
19 to 21
Copper (Cu), % 59.5 to 61
3.0 to 4.0
Iron (Fe), % 0.050 to 0.2
29.9 to 44
Lead (Pb), % 1.2 to 1.7
0
Manganese (Mn), % 0 to 0.050
0 to 2.0
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0 to 0.2
32 to 38
Niobium (Nb), % 0
0 to 1.0
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.050
0 to 1.0
Sulfur (S), % 0
0 to 0.035
Tin (Sn), % 0 to 0.3
0
Zinc (Zn), % 35.8 to 38.9
0