MakeItFrom.com
Menu (ESC)

CC755S Brass vs. S42300 Stainless Steel

CC755S brass belongs to the copper alloys classification, while S42300 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is CC755S brass and the bottom bar is S42300 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 110
330
Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 9.5
9.1
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 40
77
Tensile Strength: Ultimate (UTS), MPa 390
1100
Tensile Strength: Yield (Proof), MPa 250
850

Thermal Properties

Latent Heat of Fusion, J/g 170
270
Maximum Temperature: Mechanical, °C 120
750
Melting Completion (Liquidus), °C 820
1470
Melting Onset (Solidus), °C 780
1420
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 120
25
Thermal Expansion, µm/m-K 21
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
4.5
Electrical Conductivity: Equal Weight (Specific), % IACS 30
5.2

Otherwise Unclassified Properties

Base Metal Price, % relative 23
9.5
Density, g/cm3 8.1
7.8
Embodied Carbon, kg CO2/kg material 2.7
3.2
Embodied Energy, MJ/kg 46
44
Embodied Water, L/kg 330
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 33
93
Resilience: Unit (Modulus of Resilience), kJ/m3 290
1840
Stiffness to Weight: Axial, points 7.1
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 14
39
Strength to Weight: Bending, points 15
30
Thermal Diffusivity, mm2/s 38
6.8
Thermal Shock Resistance, points 13
40

Alloy Composition

Aluminum (Al), % 0.4 to 0.7
0
Carbon (C), % 0
0.27 to 0.32
Chromium (Cr), % 0
11 to 12
Copper (Cu), % 59.5 to 61
0
Iron (Fe), % 0.050 to 0.2
82 to 85.1
Lead (Pb), % 1.2 to 1.7
0
Manganese (Mn), % 0 to 0.050
1.0 to 1.4
Molybdenum (Mo), % 0
2.5 to 3.0
Nickel (Ni), % 0 to 0.2
0 to 0.5
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.050
0 to 0.5
Sulfur (S), % 0
0 to 0.025
Tin (Sn), % 0 to 0.3
0
Vanadium (V), % 0
0.2 to 0.3
Zinc (Zn), % 35.8 to 38.9
0