MakeItFrom.com
Menu (ESC)

CC761S Brass vs. EN 1.7725 Steel

CC761S brass belongs to the copper alloys classification, while EN 1.7725 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is CC761S brass and the bottom bar is EN 1.7725 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150
250 to 300
Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 8.7
14
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 42
73
Tensile Strength: Ultimate (UTS), MPa 540
830 to 1000
Tensile Strength: Yield (Proof), MPa 340
610 to 860

Thermal Properties

Latent Heat of Fusion, J/g 260
250
Maximum Temperature: Mechanical, °C 170
440
Melting Completion (Liquidus), °C 960
1460
Melting Onset (Solidus), °C 910
1420
Specific Heat Capacity, J/kg-K 410
470
Thermal Conductivity, W/m-K 27
39
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 43
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 27
2.9
Density, g/cm3 8.3
7.8
Embodied Carbon, kg CO2/kg material 2.7
1.8
Embodied Energy, MJ/kg 45
24
Embodied Water, L/kg 300
54

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 41
110 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 530
980 to 1940
Stiffness to Weight: Axial, points 7.4
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 18
29 to 35
Strength to Weight: Bending, points 18
25 to 28
Thermal Diffusivity, mm2/s 8.0
11
Thermal Shock Resistance, points 19
24 to 29

Alloy Composition

Aluminum (Al), % 0 to 0.1
0
Antimony (Sb), % 0 to 0.050
0
Carbon (C), % 0
0.27 to 0.34
Chromium (Cr), % 0
1.3 to 1.7
Copper (Cu), % 78 to 83
0
Iron (Fe), % 0 to 0.6
95.7 to 97.5
Lead (Pb), % 0 to 0.8
0
Manganese (Mn), % 0 to 0.2
0.6 to 1.0
Molybdenum (Mo), % 0
0.3 to 0.5
Nickel (Ni), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.030
0 to 0.025
Silicon (Si), % 3.0 to 5.0
0 to 0.6
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.3
0
Vanadium (V), % 0
0.050 to 0.15
Zinc (Zn), % 8.9 to 19
0