MakeItFrom.com
Menu (ESC)

CC763S Brass vs. Grade 38 Titanium

CC763S brass belongs to the copper alloys classification, while grade 38 titanium belongs to the titanium alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is CC763S brass and the bottom bar is grade 38 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 7.3
11
Poisson's Ratio 0.31
0.32
Shear Modulus, GPa 41
40
Tensile Strength: Ultimate (UTS), MPa 490
1000
Tensile Strength: Yield (Proof), MPa 270
910

Thermal Properties

Latent Heat of Fusion, J/g 190
410
Maximum Temperature: Mechanical, °C 140
330
Melting Completion (Liquidus), °C 870
1620
Melting Onset (Solidus), °C 830
1570
Specific Heat Capacity, J/kg-K 400
550
Thermal Expansion, µm/m-K 20
9.3

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
1.2
Electrical Conductivity: Equal Weight (Specific), % IACS 32
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 24
36
Density, g/cm3 8.0
4.5
Embodied Carbon, kg CO2/kg material 2.9
35
Embodied Energy, MJ/kg 49
560
Embodied Water, L/kg 330
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 30
110
Resilience: Unit (Modulus of Resilience), kJ/m3 340
3840
Stiffness to Weight: Axial, points 7.5
13
Stiffness to Weight: Bending, points 20
35
Strength to Weight: Axial, points 17
62
Strength to Weight: Bending, points 17
49
Thermal Shock Resistance, points 16
72

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 1.0 to 2.5
3.5 to 4.5
Antimony (Sb), % 0 to 0.080
0
Carbon (C), % 0
0 to 0.080
Copper (Cu), % 56.5 to 67
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0.5 to 2.0
1.2 to 1.8
Lead (Pb), % 0 to 1.5
0
Manganese (Mn), % 1.0 to 3.5
0
Nickel (Ni), % 0 to 2.5
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0.2 to 0.3
Silicon (Si), % 0 to 1.0
0
Tin (Sn), % 0 to 1.0
0
Titanium (Ti), % 0
89.9 to 93.1
Vanadium (V), % 0
2.0 to 3.0
Zinc (Zn), % 18.9 to 41
0
Residuals, % 0
0 to 0.4