MakeItFrom.com
Menu (ESC)

CC763S Brass vs. SAE-AISI 1345 Steel

CC763S brass belongs to the copper alloys classification, while SAE-AISI 1345 steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is CC763S brass and the bottom bar is SAE-AISI 1345 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 130
170 to 210
Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 7.3
11 to 23
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 41
72
Tensile Strength: Ultimate (UTS), MPa 490
590 to 730
Tensile Strength: Yield (Proof), MPa 270
330 to 620

Thermal Properties

Latent Heat of Fusion, J/g 190
250
Maximum Temperature: Mechanical, °C 140
400
Melting Completion (Liquidus), °C 870
1450
Melting Onset (Solidus), °C 830
1410
Specific Heat Capacity, J/kg-K 400
470
Thermal Expansion, µm/m-K 20
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 32
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 24
1.9
Density, g/cm3 8.0
7.8
Embodied Carbon, kg CO2/kg material 2.9
1.4
Embodied Energy, MJ/kg 49
19
Embodied Water, L/kg 330
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 30
78 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 340
290 to 1040
Stiffness to Weight: Axial, points 7.5
13
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 17
21 to 26
Strength to Weight: Bending, points 17
20 to 23
Thermal Shock Resistance, points 16
19 to 23

Alloy Composition

Aluminum (Al), % 1.0 to 2.5
0
Antimony (Sb), % 0 to 0.080
0
Carbon (C), % 0
0.43 to 0.48
Copper (Cu), % 56.5 to 67
0
Iron (Fe), % 0.5 to 2.0
97.2 to 97.8
Lead (Pb), % 0 to 1.5
0
Manganese (Mn), % 1.0 to 3.5
1.6 to 1.9
Nickel (Ni), % 0 to 2.5
0
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0 to 1.0
0.15 to 0.35
Sulfur (S), % 0
0 to 0.040
Tin (Sn), % 0 to 1.0
0
Zinc (Zn), % 18.9 to 41
0